kajyuuen
commited on
Commit
•
a7345ac
0
Parent(s):
Initial commit
Browse files- .gitattributes +34 -0
- LICENSE +202 -0
- README.md +64 -0
- config.json +23 -0
- distilbert_japanese_tokenizer.py +1012 -0
- pytorch_model.bin +3 -0
- spiece.model +3 -0
- tokenizer_config.json +32 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright 2021 LINE Corporation
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ja
|
3 |
+
license: apache-2.0
|
4 |
+
mask_token: "[MASK]"
|
5 |
+
widget:
|
6 |
+
- text: "LINE株式会社で[MASK]の研究・開発をしている。"
|
7 |
+
---
|
8 |
+
|
9 |
+
# LINE DistilBERT Japanese
|
10 |
+
|
11 |
+
This is a DistilBERT model pre-trained on 131 GB of Japanese web text.
|
12 |
+
The teacher model is BERT-base that built in-house at LINE.
|
13 |
+
The model was trained by [LINE Corporation](https://linecorp.com/).
|
14 |
+
|
15 |
+
## For Japanese
|
16 |
+
|
17 |
+
https://github.com/line/LINE-DistilBERT-Japanese/README_ja.md is written in Japanese.
|
18 |
+
|
19 |
+
## How to use
|
20 |
+
|
21 |
+
```python
|
22 |
+
from transformers import AutoTokenizer, AutoModel
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained("line-corporation/line-distilbert-base-japanese", trust_remote_code=True)
|
24 |
+
model = AutoModel.from_pretrained("line-corporation/line-distilbert-base-japanese")
|
25 |
+
|
26 |
+
sentence = "LINE株式会社で[MASK]の研究・開発をしている。"
|
27 |
+
print(model(**tokenizer(sentence, return_tensors="pt")))
|
28 |
+
```
|
29 |
+
|
30 |
+
## Model architecture
|
31 |
+
|
32 |
+
The model architecture is the DitilBERT base model; 6 layers, 768 dimensions of hidden states, 12 attention heads, 66M parameters.
|
33 |
+
|
34 |
+
## Evaluation
|
35 |
+
|
36 |
+
The evaluation by [JGLUE](https://github.com/yahoojapan/JGLUE) is as follows:
|
37 |
+
|
38 |
+
| model name | #Params | Marc_ja | JNLI | JSTS | JSQuAD | JCommonSenseQA |
|
39 |
+
|------------------------|:-------:|:-------:|:----:|:----------------:|:---------:|:--------------:|
|
40 |
+
| | | acc | acc | Pearson/Spearman | EM/F1 | acc |
|
41 |
+
| LINE-DistilBERT | 68M | 95.6 | 88.9 | 89.2/85.1 | 87.3/93.3 | 76.1 |
|
42 |
+
| Laboro-DistilBERT | 68M | 94.7 | 82.0 | 87.4/82.7 | 70.2/87.3 | 73.2 |
|
43 |
+
| BandaiNamco-DistilBERT | 68M | 94.6 | 81.6 | 86.8/82.1 | 80.0/88.0 | 66.5 |
|
44 |
+
|
45 |
+
## Tokenization
|
46 |
+
|
47 |
+
The texts are first tokenized by MeCab with the Unidic dictionary and then split into subwords by the SentencePiece algorithm. The vocabulary size is 32768.
|
48 |
+
|
49 |
+
## Licenses
|
50 |
+
|
51 |
+
The pretrained models are distributed under the terms of the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
|
52 |
+
|
53 |
+
## To cite this work
|
54 |
+
|
55 |
+
We haven't published any paper on this work. Please cite [this GitHub repository](http://github.com/line/LINE-DistilBERT-Japanese):
|
56 |
+
|
57 |
+
```
|
58 |
+
@article{LINE DistilBERT Japanese,
|
59 |
+
title = {LINE DistilBERT Japanese},
|
60 |
+
author = {"Koga, Kobayashi and Li, Shengzhe and Nakamachi, Akifumi and Sato, Toshinori"},
|
61 |
+
year = {2023},
|
62 |
+
howpublished = {\url{http://github.com/line/LINE-DistilBERT-Japanese}}
|
63 |
+
}
|
64 |
+
```
|
config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation": "gelu",
|
3 |
+
"architectures": [
|
4 |
+
"DistilBertForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.1,
|
7 |
+
"dim": 768,
|
8 |
+
"dropout": 0.1,
|
9 |
+
"hidden_dim": 3072,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"max_position_embeddings": 512,
|
12 |
+
"model_type": "distilbert",
|
13 |
+
"n_heads": 12,
|
14 |
+
"n_layers": 6,
|
15 |
+
"output_hidden_states": true,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"qa_dropout": 0.1,
|
18 |
+
"seq_classif_dropout": 0.2,
|
19 |
+
"sinusoidal_pos_embds": true,
|
20 |
+
"tie_weights_": true,
|
21 |
+
"transformers_version": "4.18.0",
|
22 |
+
"vocab_size": 32768
|
23 |
+
}
|
distilbert_japanese_tokenizer.py
ADDED
@@ -0,0 +1,1012 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
|
3 |
+
# Copyright 2023 LINE Corporation.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
# Almost copied from [transformers.BertJapaneseTokenizer](https://github.com/huggingface/transformers/blob/v4.26.1/src/transformers/models/bert_japanese/tokenization_bert_japanese.py#)
|
18 |
+
# This code is distributed under the Apache License 2.0.
|
19 |
+
|
20 |
+
"""Tokenization classes."""
|
21 |
+
|
22 |
+
|
23 |
+
import collections
|
24 |
+
import copy
|
25 |
+
import os
|
26 |
+
import unicodedata
|
27 |
+
from typing import Any, Dict, List, Optional, Tuple
|
28 |
+
|
29 |
+
from transformers.tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
30 |
+
from transformers.utils import is_sentencepiece_available, logging
|
31 |
+
|
32 |
+
|
33 |
+
if is_sentencepiece_available():
|
34 |
+
import sentencepiece as spm
|
35 |
+
else:
|
36 |
+
spm = None
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "spm_file": "spiece.model"}
|
41 |
+
|
42 |
+
SPIECE_UNDERLINE = "▁"
|
43 |
+
|
44 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
45 |
+
"vocab_file": {
|
46 |
+
"cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/vocab.txt",
|
47 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking": (
|
48 |
+
"https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/vocab.txt"
|
49 |
+
),
|
50 |
+
"cl-tohoku/bert-base-japanese-char": (
|
51 |
+
"https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/vocab.txt"
|
52 |
+
),
|
53 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking": (
|
54 |
+
"https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/vocab.txt"
|
55 |
+
),
|
56 |
+
}
|
57 |
+
}
|
58 |
+
|
59 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
60 |
+
"cl-tohoku/bert-base-japanese": 512,
|
61 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking": 512,
|
62 |
+
"cl-tohoku/bert-base-japanese-char": 512,
|
63 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking": 512,
|
64 |
+
}
|
65 |
+
|
66 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
67 |
+
"cl-tohoku/bert-base-japanese": {
|
68 |
+
"do_lower_case": False,
|
69 |
+
"word_tokenizer_type": "mecab",
|
70 |
+
"subword_tokenizer_type": "wordpiece",
|
71 |
+
},
|
72 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking": {
|
73 |
+
"do_lower_case": False,
|
74 |
+
"word_tokenizer_type": "mecab",
|
75 |
+
"subword_tokenizer_type": "wordpiece",
|
76 |
+
},
|
77 |
+
"cl-tohoku/bert-base-japanese-char": {
|
78 |
+
"do_lower_case": False,
|
79 |
+
"word_tokenizer_type": "mecab",
|
80 |
+
"subword_tokenizer_type": "character",
|
81 |
+
},
|
82 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking": {
|
83 |
+
"do_lower_case": False,
|
84 |
+
"word_tokenizer_type": "mecab",
|
85 |
+
"subword_tokenizer_type": "character",
|
86 |
+
},
|
87 |
+
}
|
88 |
+
|
89 |
+
|
90 |
+
# Copied from transformers.models.bert.tokenization_bert.load_vocab
|
91 |
+
def load_vocab(vocab_file):
|
92 |
+
"""Loads a vocabulary file into a dictionary."""
|
93 |
+
vocab = collections.OrderedDict()
|
94 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
95 |
+
tokens = reader.readlines()
|
96 |
+
for index, token in enumerate(tokens):
|
97 |
+
token = token.rstrip("\n")
|
98 |
+
vocab[token] = index
|
99 |
+
return vocab
|
100 |
+
|
101 |
+
|
102 |
+
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
|
103 |
+
def whitespace_tokenize(text):
|
104 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
105 |
+
text = text.strip()
|
106 |
+
if not text:
|
107 |
+
return []
|
108 |
+
tokens = text.split()
|
109 |
+
return tokens
|
110 |
+
|
111 |
+
|
112 |
+
class DistilBertJapaneseTokenizer(PreTrainedTokenizer):
|
113 |
+
r"""
|
114 |
+
Construct a BERT tokenizer for Japanese text.
|
115 |
+
|
116 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer
|
117 |
+
to: this superclass for more information regarding those methods.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
vocab_file (`str`):
|
121 |
+
Path to a one-wordpiece-per-line vocabulary file.
|
122 |
+
spm_file (`str`, *optional*):
|
123 |
+
Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm or .model
|
124 |
+
extension) that contains the vocabulary.
|
125 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
126 |
+
Whether to lower case the input. Only has an effect when do_basic_tokenize=True.
|
127 |
+
do_word_tokenize (`bool`, *optional*, defaults to `True`):
|
128 |
+
Whether to do word tokenization.
|
129 |
+
do_subword_tokenize (`bool`, *optional*, defaults to `True`):
|
130 |
+
Whether to do subword tokenization.
|
131 |
+
word_tokenizer_type (`str`, *optional*, defaults to `"basic"`):
|
132 |
+
Type of word tokenizer. Choose from ["basic", "mecab", "sudachi", "jumanpp"].
|
133 |
+
subword_tokenizer_type (`str`, *optional*, defaults to `"wordpiece"`):
|
134 |
+
Type of subword tokenizer. Choose from ["wordpiece", "character", "sentencepiece",].
|
135 |
+
mecab_kwargs (`dict`, *optional*):
|
136 |
+
Dictionary passed to the `MecabTokenizer` constructor.
|
137 |
+
sudachi_kwargs (`dict`, *optional*):
|
138 |
+
Dictionary passed to the `SudachiTokenizer` constructor.
|
139 |
+
jumanpp_kwargs (`dict`, *optional*):
|
140 |
+
Dictionary passed to the `JumanppTokenizer` constructor.
|
141 |
+
"""
|
142 |
+
|
143 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
144 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
145 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
146 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
147 |
+
model_input_names = [ "input_ids" , "attention_mask" ]
|
148 |
+
|
149 |
+
def __init__(
|
150 |
+
self,
|
151 |
+
vocab_file,
|
152 |
+
spm_file=None,
|
153 |
+
do_lower_case=False,
|
154 |
+
do_word_tokenize=True,
|
155 |
+
do_subword_tokenize=True,
|
156 |
+
word_tokenizer_type="basic",
|
157 |
+
subword_tokenizer_type="wordpiece",
|
158 |
+
never_split=None,
|
159 |
+
unk_token="[UNK]",
|
160 |
+
sep_token="[SEP]",
|
161 |
+
pad_token="[PAD]",
|
162 |
+
cls_token="[CLS]",
|
163 |
+
mask_token="[MASK]",
|
164 |
+
mecab_kwargs=None,
|
165 |
+
sudachi_kwargs=None,
|
166 |
+
jumanpp_kwargs=None,
|
167 |
+
**kwargs
|
168 |
+
):
|
169 |
+
super().__init__(
|
170 |
+
spm_file=spm_file,
|
171 |
+
unk_token=unk_token,
|
172 |
+
sep_token=sep_token,
|
173 |
+
pad_token=pad_token,
|
174 |
+
cls_token=cls_token,
|
175 |
+
mask_token=mask_token,
|
176 |
+
do_lower_case=do_lower_case,
|
177 |
+
do_word_tokenize=do_word_tokenize,
|
178 |
+
do_subword_tokenize=do_subword_tokenize,
|
179 |
+
word_tokenizer_type=word_tokenizer_type,
|
180 |
+
subword_tokenizer_type=subword_tokenizer_type,
|
181 |
+
never_split=never_split,
|
182 |
+
mecab_kwargs=mecab_kwargs,
|
183 |
+
sudachi_kwargs=sudachi_kwargs,
|
184 |
+
jumanpp_kwargs=jumanpp_kwargs,
|
185 |
+
**kwargs,
|
186 |
+
)
|
187 |
+
|
188 |
+
if subword_tokenizer_type == "sentencepiece":
|
189 |
+
if not os.path.isfile(spm_file):
|
190 |
+
raise ValueError(
|
191 |
+
f"Can't find a vocabulary file at path '{spm_file}'. To load the vocabulary from a Google"
|
192 |
+
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
193 |
+
)
|
194 |
+
self.spm_file = spm_file
|
195 |
+
else:
|
196 |
+
if not os.path.isfile(vocab_file):
|
197 |
+
raise ValueError(
|
198 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google"
|
199 |
+
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
200 |
+
)
|
201 |
+
self.vocab = load_vocab(vocab_file)
|
202 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
203 |
+
|
204 |
+
self.do_word_tokenize = do_word_tokenize
|
205 |
+
self.word_tokenizer_type = word_tokenizer_type
|
206 |
+
self.lower_case = do_lower_case
|
207 |
+
self.never_split = never_split
|
208 |
+
self.mecab_kwargs = copy.deepcopy(mecab_kwargs)
|
209 |
+
self.sudachi_kwargs = copy.deepcopy(sudachi_kwargs)
|
210 |
+
self.jumanpp_kwargs = copy.deepcopy(jumanpp_kwargs)
|
211 |
+
if do_word_tokenize:
|
212 |
+
if word_tokenizer_type == "basic":
|
213 |
+
self.word_tokenizer = BasicTokenizer(
|
214 |
+
do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=False
|
215 |
+
)
|
216 |
+
elif word_tokenizer_type == "mecab":
|
217 |
+
self.word_tokenizer = MecabTokenizer(
|
218 |
+
do_lower_case=do_lower_case, never_split=never_split, **(mecab_kwargs or {})
|
219 |
+
)
|
220 |
+
elif word_tokenizer_type == "sudachi":
|
221 |
+
self.word_tokenizer = SudachiTokenizer(
|
222 |
+
do_lower_case=do_lower_case, never_split=never_split, **(sudachi_kwargs or {})
|
223 |
+
)
|
224 |
+
elif word_tokenizer_type == "jumanpp":
|
225 |
+
self.word_tokenizer = JumanppTokenizer(
|
226 |
+
do_lower_case=do_lower_case, never_split=never_split, **(jumanpp_kwargs or {})
|
227 |
+
)
|
228 |
+
else:
|
229 |
+
raise ValueError(f"Invalid word_tokenizer_type '{word_tokenizer_type}' is specified.")
|
230 |
+
|
231 |
+
self.do_subword_tokenize = do_subword_tokenize
|
232 |
+
self.subword_tokenizer_type = subword_tokenizer_type
|
233 |
+
if do_subword_tokenize:
|
234 |
+
if subword_tokenizer_type == "wordpiece":
|
235 |
+
self.subword_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
|
236 |
+
elif subword_tokenizer_type == "character":
|
237 |
+
self.subword_tokenizer = CharacterTokenizer(vocab=self.vocab, unk_token=self.unk_token)
|
238 |
+
elif subword_tokenizer_type == "sentencepiece":
|
239 |
+
self.subword_tokenizer = SentencepieceTokenizer(vocab=self.spm_file, unk_token=self.unk_token)
|
240 |
+
else:
|
241 |
+
raise ValueError(f"Invalid subword_tokenizer_type '{subword_tokenizer_type}' is specified.")
|
242 |
+
|
243 |
+
@property
|
244 |
+
def do_lower_case(self):
|
245 |
+
return self.lower_case
|
246 |
+
|
247 |
+
def __getstate__(self):
|
248 |
+
state = dict(self.__dict__)
|
249 |
+
if self.word_tokenizer_type in ["mecab", "sudachi", "jumanpp"]:
|
250 |
+
del state["word_tokenizer"]
|
251 |
+
return state
|
252 |
+
|
253 |
+
def __setstate__(self, state):
|
254 |
+
self.__dict__ = state
|
255 |
+
if self.word_tokenizer_type == "mecab":
|
256 |
+
self.word_tokenizer = MecabTokenizer(
|
257 |
+
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.mecab_kwargs or {})
|
258 |
+
)
|
259 |
+
elif self.word_tokenizer_type == "sudachi":
|
260 |
+
self.word_tokenizer = SudachiTokenizer(
|
261 |
+
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.sudachi_kwargs or {})
|
262 |
+
)
|
263 |
+
elif self.word_tokenizer_type == "jumanpp":
|
264 |
+
self.word_tokenizer = JumanppTokenizer(
|
265 |
+
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.jumanpp_kwargs or {})
|
266 |
+
)
|
267 |
+
|
268 |
+
def _tokenize(self, text):
|
269 |
+
if self.do_word_tokenize:
|
270 |
+
tokens = self.word_tokenizer.tokenize(text, never_split=self.all_special_tokens)
|
271 |
+
else:
|
272 |
+
tokens = [text]
|
273 |
+
|
274 |
+
if self.do_subword_tokenize:
|
275 |
+
split_tokens = [sub_token for token in tokens for sub_token in self.subword_tokenizer.tokenize(token)]
|
276 |
+
else:
|
277 |
+
split_tokens = tokens
|
278 |
+
|
279 |
+
return split_tokens
|
280 |
+
|
281 |
+
@property
|
282 |
+
def vocab_size(self):
|
283 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
284 |
+
return len(self.subword_tokenizer.sp_model)
|
285 |
+
return len(self.vocab)
|
286 |
+
|
287 |
+
def get_vocab(self):
|
288 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
289 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
290 |
+
vocab.update(self.added_tokens_encoder)
|
291 |
+
return vocab
|
292 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
293 |
+
|
294 |
+
def _convert_token_to_id(self, token):
|
295 |
+
"""Converts a token (str) in an id using the vocab."""
|
296 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
297 |
+
return self.subword_tokenizer.sp_model.PieceToId(token)
|
298 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
299 |
+
|
300 |
+
def _convert_id_to_token(self, index):
|
301 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
302 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
303 |
+
return self.subword_tokenizer.sp_model.IdToPiece(index)
|
304 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
305 |
+
|
306 |
+
def convert_tokens_to_string(self, tokens):
|
307 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
308 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
309 |
+
return self.subword_tokenizer.sp_model.decode(tokens)
|
310 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
311 |
+
return out_string
|
312 |
+
|
313 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
|
314 |
+
def build_inputs_with_special_tokens(
|
315 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
316 |
+
) -> List[int]:
|
317 |
+
"""
|
318 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
319 |
+
adding special tokens. A BERT sequence has the following format:
|
320 |
+
|
321 |
+
- single sequence: `[CLS] X [SEP]`
|
322 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
323 |
+
|
324 |
+
Args:
|
325 |
+
token_ids_0 (`List[int]`):
|
326 |
+
List of IDs to which the special tokens will be added.
|
327 |
+
token_ids_1 (`List[int]`, *optional*):
|
328 |
+
Optional second list of IDs for sequence pairs.
|
329 |
+
|
330 |
+
Returns:
|
331 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
332 |
+
"""
|
333 |
+
if token_ids_1 is None:
|
334 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
335 |
+
cls = [self.cls_token_id]
|
336 |
+
sep = [self.sep_token_id]
|
337 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
338 |
+
|
339 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
|
340 |
+
def get_special_tokens_mask(
|
341 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
342 |
+
) -> List[int]:
|
343 |
+
"""
|
344 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
345 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
token_ids_0 (`List[int]`):
|
349 |
+
List of IDs.
|
350 |
+
token_ids_1 (`List[int]`, *optional*):
|
351 |
+
Optional second list of IDs for sequence pairs.
|
352 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
353 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
354 |
+
|
355 |
+
Returns:
|
356 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
357 |
+
"""
|
358 |
+
|
359 |
+
if already_has_special_tokens:
|
360 |
+
return super().get_special_tokens_mask(
|
361 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
362 |
+
)
|
363 |
+
|
364 |
+
if token_ids_1 is not None:
|
365 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
366 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
367 |
+
|
368 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
|
369 |
+
def create_token_type_ids_from_sequences(
|
370 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
371 |
+
) -> List[int]:
|
372 |
+
"""
|
373 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
374 |
+
pair mask has the following format:
|
375 |
+
|
376 |
+
```
|
377 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
378 |
+
| first sequence | second sequence |
|
379 |
+
```
|
380 |
+
|
381 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
382 |
+
|
383 |
+
Args:
|
384 |
+
token_ids_0 (`List[int]`):
|
385 |
+
List of IDs.
|
386 |
+
token_ids_1 (`List[int]`, *optional*):
|
387 |
+
Optional second list of IDs for sequence pairs.
|
388 |
+
|
389 |
+
Returns:
|
390 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
391 |
+
"""
|
392 |
+
sep = [self.sep_token_id]
|
393 |
+
cls = [self.cls_token_id]
|
394 |
+
if token_ids_1 is None:
|
395 |
+
return len(cls + token_ids_0 + sep) * [0]
|
396 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
397 |
+
|
398 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
399 |
+
if os.path.isdir(save_directory):
|
400 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
401 |
+
vocab_file = os.path.join(
|
402 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["spm_file"]
|
403 |
+
)
|
404 |
+
else:
|
405 |
+
vocab_file = os.path.join(
|
406 |
+
save_directory,
|
407 |
+
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"],
|
408 |
+
)
|
409 |
+
else:
|
410 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
411 |
+
|
412 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
413 |
+
with open(vocab_file, "wb") as writer:
|
414 |
+
content_spiece_model = self.subword_tokenizer.sp_model.serialized_model_proto()
|
415 |
+
writer.write(content_spiece_model)
|
416 |
+
else:
|
417 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
418 |
+
index = 0
|
419 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
420 |
+
if index != token_index:
|
421 |
+
logger.warning(
|
422 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
423 |
+
" Please check that the vocabulary is not corrupted!"
|
424 |
+
)
|
425 |
+
index = token_index
|
426 |
+
writer.write(token + "\n")
|
427 |
+
index += 1
|
428 |
+
return (vocab_file,)
|
429 |
+
|
430 |
+
|
431 |
+
class MecabTokenizer:
|
432 |
+
"""Runs basic tokenization with MeCab morphological parser."""
|
433 |
+
|
434 |
+
def __init__(
|
435 |
+
self,
|
436 |
+
do_lower_case=False,
|
437 |
+
never_split=None,
|
438 |
+
normalize_text=True,
|
439 |
+
mecab_dic: Optional[str] = "ipadic",
|
440 |
+
mecab_option: Optional[str] = None,
|
441 |
+
):
|
442 |
+
"""
|
443 |
+
Constructs a MecabTokenizer.
|
444 |
+
|
445 |
+
Args:
|
446 |
+
**do_lower_case**: (*optional*) boolean (default True)
|
447 |
+
Whether to lowercase the input.
|
448 |
+
**never_split**: (*optional*) list of str
|
449 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
450 |
+
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
|
451 |
+
**normalize_text**: (*optional*) boolean (default True)
|
452 |
+
Whether to apply unicode normalization to text before tokenization.
|
453 |
+
**mecab_dic**: (*optional*) string (default "ipadic")
|
454 |
+
Name of dictionary to be used for MeCab initialization. If you are using a system-installed dictionary,
|
455 |
+
set this option to `None` and modify *mecab_option*.
|
456 |
+
**mecab_option**: (*optional*) string
|
457 |
+
String passed to MeCab constructor.
|
458 |
+
"""
|
459 |
+
self.do_lower_case = do_lower_case
|
460 |
+
self.never_split = never_split if never_split is not None else []
|
461 |
+
self.normalize_text = normalize_text
|
462 |
+
|
463 |
+
try:
|
464 |
+
import fugashi
|
465 |
+
except ModuleNotFoundError as error:
|
466 |
+
raise error.__class__(
|
467 |
+
"You need to install fugashi to use MecabTokenizer. "
|
468 |
+
"See https://pypi.org/project/fugashi/ for installation."
|
469 |
+
)
|
470 |
+
|
471 |
+
mecab_option = mecab_option or ""
|
472 |
+
|
473 |
+
if mecab_dic is not None:
|
474 |
+
if mecab_dic == "ipadic":
|
475 |
+
try:
|
476 |
+
import ipadic
|
477 |
+
except ModuleNotFoundError as error:
|
478 |
+
raise error.__class__(
|
479 |
+
"The ipadic dictionary is not installed. "
|
480 |
+
"See https://github.com/polm/ipadic-py for installation."
|
481 |
+
)
|
482 |
+
|
483 |
+
dic_dir = ipadic.DICDIR
|
484 |
+
|
485 |
+
elif mecab_dic == "unidic_lite":
|
486 |
+
try:
|
487 |
+
import unidic_lite
|
488 |
+
except ModuleNotFoundError as error:
|
489 |
+
raise error.__class__(
|
490 |
+
"The unidic_lite dictionary is not installed. "
|
491 |
+
"See https://github.com/polm/unidic-lite for installation."
|
492 |
+
)
|
493 |
+
|
494 |
+
dic_dir = unidic_lite.DICDIR
|
495 |
+
|
496 |
+
elif mecab_dic == "unidic":
|
497 |
+
try:
|
498 |
+
import unidic
|
499 |
+
except ModuleNotFoundError as error:
|
500 |
+
raise error.__class__(
|
501 |
+
"The unidic dictionary is not installed. "
|
502 |
+
"See https://github.com/polm/unidic-py for installation."
|
503 |
+
)
|
504 |
+
|
505 |
+
dic_dir = unidic.DICDIR
|
506 |
+
if not os.path.isdir(dic_dir):
|
507 |
+
raise RuntimeError(
|
508 |
+
"The unidic dictionary itself is not found. "
|
509 |
+
"See https://github.com/polm/unidic-py for installation."
|
510 |
+
)
|
511 |
+
|
512 |
+
else:
|
513 |
+
raise ValueError("Invalid mecab_dic is specified.")
|
514 |
+
|
515 |
+
mecabrc = os.path.join(dic_dir, "mecabrc")
|
516 |
+
mecab_option = f'-d "{dic_dir}" -r "{mecabrc}" ' + mecab_option
|
517 |
+
|
518 |
+
self.mecab = fugashi.GenericTagger(mecab_option)
|
519 |
+
|
520 |
+
def tokenize(self, text, never_split=None, **kwargs):
|
521 |
+
"""Tokenizes a piece of text."""
|
522 |
+
if self.normalize_text:
|
523 |
+
text = unicodedata.normalize("NFKC", text)
|
524 |
+
|
525 |
+
never_split = self.never_split + (never_split if never_split is not None else [])
|
526 |
+
tokens = []
|
527 |
+
|
528 |
+
for word in self.mecab(text):
|
529 |
+
token = word.surface
|
530 |
+
|
531 |
+
if self.do_lower_case and token not in never_split:
|
532 |
+
token = token.lower()
|
533 |
+
|
534 |
+
tokens.append(token)
|
535 |
+
|
536 |
+
return tokens
|
537 |
+
|
538 |
+
|
539 |
+
class SudachiTokenizer:
|
540 |
+
"""Runs basic tokenization with Sudachi morphological parser."""
|
541 |
+
|
542 |
+
def __init__(
|
543 |
+
self,
|
544 |
+
do_lower_case=False,
|
545 |
+
never_split=None,
|
546 |
+
normalize_text=True,
|
547 |
+
trim_whitespace=False,
|
548 |
+
sudachi_split_mode="A",
|
549 |
+
sudachi_config_path=None,
|
550 |
+
sudachi_resource_dir=None,
|
551 |
+
sudachi_dict_type="core",
|
552 |
+
):
|
553 |
+
"""
|
554 |
+
Constructs a SudachiTokenizer.
|
555 |
+
|
556 |
+
Args:
|
557 |
+
**do_lower_case**: (*optional*) boolean (default True)
|
558 |
+
Whether to lowercase the input.
|
559 |
+
**never_split**: (*optional*) list of str
|
560 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
561 |
+
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
|
562 |
+
**normalize_text**: (*optional*) boolean (default True)
|
563 |
+
Whether to apply unicode normalization to text before tokenization.
|
564 |
+
**trim_whitespace**: (*optional*) boolean (default False)
|
565 |
+
Whether to trim all whitespace, tab, newline from tokens.
|
566 |
+
**sudachi_split_mode**: (*optional*) string
|
567 |
+
Split mode of sudachi, choose from "A", "B", "C".
|
568 |
+
**sudachi_config_path**: (*optional*) string
|
569 |
+
**sudachi_resource_dir**: (*optional*) string
|
570 |
+
**sudachi_dict_type**: (*optional*) string
|
571 |
+
dict type of sudachi, choose from "small", "core", "full".
|
572 |
+
"""
|
573 |
+
|
574 |
+
self.do_lower_case = do_lower_case
|
575 |
+
self.never_split = never_split if never_split is not None else []
|
576 |
+
self.normalize_text = normalize_text
|
577 |
+
self.trim_whitespace = trim_whitespace
|
578 |
+
|
579 |
+
try:
|
580 |
+
from sudachipy import dictionary, tokenizer
|
581 |
+
except ImportError:
|
582 |
+
raise ImportError(
|
583 |
+
"You need to install sudachipy to use SudachiTokenizer. "
|
584 |
+
"See https://github.com/WorksApplications/SudachiPy for installation."
|
585 |
+
)
|
586 |
+
|
587 |
+
if sudachi_split_mode == "A":
|
588 |
+
self.split_mode = tokenizer.Tokenizer.SplitMode.A
|
589 |
+
elif sudachi_split_mode == "B":
|
590 |
+
self.split_mode = tokenizer.Tokenizer.SplitMode.B
|
591 |
+
elif sudachi_split_mode == "C":
|
592 |
+
self.split_mode = tokenizer.Tokenizer.SplitMode.C
|
593 |
+
else:
|
594 |
+
raise ValueError("Invalid sudachi_split_mode is specified.")
|
595 |
+
|
596 |
+
self.sudachi = dictionary.Dictionary(
|
597 |
+
config_path=sudachi_config_path, resource_dir=sudachi_resource_dir, dict=sudachi_dict_type
|
598 |
+
).create(self.split_mode)
|
599 |
+
|
600 |
+
def tokenize(self, text, never_split=None, **kwargs):
|
601 |
+
"""Tokenizes a piece of text."""
|
602 |
+
if self.normalize_text:
|
603 |
+
text = unicodedata.normalize("NFKC", text)
|
604 |
+
|
605 |
+
never_split = self.never_split + (never_split if never_split is not None else [])
|
606 |
+
tokens = []
|
607 |
+
|
608 |
+
for word in self.sudachi.tokenize(text):
|
609 |
+
token = word.surface()
|
610 |
+
|
611 |
+
if self.do_lower_case and token not in never_split:
|
612 |
+
token = token.lower()
|
613 |
+
|
614 |
+
if self.trim_whitespace:
|
615 |
+
if token.strip() == "":
|
616 |
+
continue
|
617 |
+
else:
|
618 |
+
token = token.strip()
|
619 |
+
|
620 |
+
tokens.append(token)
|
621 |
+
|
622 |
+
return tokens
|
623 |
+
|
624 |
+
|
625 |
+
class JumanppTokenizer:
|
626 |
+
"""Runs basic tokenization with jumanpp morphological parser."""
|
627 |
+
|
628 |
+
def __init__(
|
629 |
+
self,
|
630 |
+
do_lower_case=False,
|
631 |
+
never_split=None,
|
632 |
+
normalize_text=True,
|
633 |
+
trim_whitespace=False,
|
634 |
+
):
|
635 |
+
"""
|
636 |
+
Constructs a JumanppTokenizer.
|
637 |
+
|
638 |
+
Args:
|
639 |
+
**do_lower_case**: (*optional*) boolean (default True)
|
640 |
+
Whether to lowercase the input.
|
641 |
+
**never_split**: (*optional*) list of str
|
642 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
643 |
+
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
|
644 |
+
**normalize_text**: (*optional*) boolean (default True)
|
645 |
+
Whether to apply unicode normalization to text before tokenization.
|
646 |
+
**trim_whitespace**: (*optional*) boolean (default False)
|
647 |
+
Whether to trim all whitespace, tab, newline from tokens.
|
648 |
+
"""
|
649 |
+
|
650 |
+
self.do_lower_case = do_lower_case
|
651 |
+
self.never_split = never_split if never_split is not None else []
|
652 |
+
self.normalize_text = normalize_text
|
653 |
+
self.trim_whitespace = trim_whitespace
|
654 |
+
|
655 |
+
try:
|
656 |
+
import rhoknp
|
657 |
+
except ImportError:
|
658 |
+
raise ImportError(
|
659 |
+
"You need to install rhoknp to use JumanppTokenizer. "
|
660 |
+
"See https://github.com/ku-nlp/rhoknp for installation."
|
661 |
+
)
|
662 |
+
|
663 |
+
self.juman = rhoknp.Jumanpp()
|
664 |
+
|
665 |
+
def tokenize(self, text, never_split=None, **kwargs):
|
666 |
+
"""Tokenizes a piece of text."""
|
667 |
+
if self.normalize_text:
|
668 |
+
text = unicodedata.normalize("NFKC", text)
|
669 |
+
|
670 |
+
text = text.strip()
|
671 |
+
|
672 |
+
never_split = self.never_split + (never_split if never_split is not None else [])
|
673 |
+
tokens = []
|
674 |
+
|
675 |
+
for mrph in self.juman.apply_to_sentence(text).morphemes:
|
676 |
+
token = mrph.text
|
677 |
+
|
678 |
+
if self.do_lower_case and token not in never_split:
|
679 |
+
token = token.lower()
|
680 |
+
|
681 |
+
if self.trim_whitespace:
|
682 |
+
if token.strip() == "":
|
683 |
+
continue
|
684 |
+
else:
|
685 |
+
token = token.strip()
|
686 |
+
|
687 |
+
tokens.append(token)
|
688 |
+
|
689 |
+
return tokens
|
690 |
+
|
691 |
+
|
692 |
+
class CharacterTokenizer:
|
693 |
+
"""Runs Character tokenization."""
|
694 |
+
|
695 |
+
def __init__(self, vocab, unk_token, normalize_text=True):
|
696 |
+
"""
|
697 |
+
Constructs a CharacterTokenizer.
|
698 |
+
|
699 |
+
Args:
|
700 |
+
**vocab**:
|
701 |
+
Vocabulary object.
|
702 |
+
**unk_token**: str
|
703 |
+
A special symbol for out-of-vocabulary token.
|
704 |
+
**normalize_text**: (`optional`) boolean (default True)
|
705 |
+
Whether to apply unicode normalization to text before tokenization.
|
706 |
+
"""
|
707 |
+
self.vocab = vocab
|
708 |
+
self.unk_token = unk_token
|
709 |
+
self.normalize_text = normalize_text
|
710 |
+
|
711 |
+
def tokenize(self, text):
|
712 |
+
"""
|
713 |
+
Tokenizes a piece of text into characters.
|
714 |
+
|
715 |
+
For example, `input = "apple""` wil return as output `["a", "p", "p", "l", "e"]`.
|
716 |
+
|
717 |
+
Args:
|
718 |
+
text: A single token or whitespace separated tokens.
|
719 |
+
This should have already been passed through *BasicTokenizer*.
|
720 |
+
|
721 |
+
Returns:
|
722 |
+
A list of characters.
|
723 |
+
"""
|
724 |
+
if self.normalize_text:
|
725 |
+
text = unicodedata.normalize("NFKC", text)
|
726 |
+
|
727 |
+
output_tokens = []
|
728 |
+
for char in text:
|
729 |
+
if char not in self.vocab:
|
730 |
+
output_tokens.append(self.unk_token)
|
731 |
+
continue
|
732 |
+
|
733 |
+
output_tokens.append(char)
|
734 |
+
|
735 |
+
return output_tokens
|
736 |
+
|
737 |
+
|
738 |
+
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
739 |
+
class BasicTokenizer(object):
|
740 |
+
"""
|
741 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
742 |
+
|
743 |
+
Args:
|
744 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
745 |
+
Whether or not to lowercase the input when tokenizing.
|
746 |
+
never_split (`Iterable`, *optional*):
|
747 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
748 |
+
`do_basic_tokenize=True`
|
749 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
750 |
+
Whether or not to tokenize Chinese characters.
|
751 |
+
|
752 |
+
This should likely be deactivated for Japanese (see this
|
753 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
754 |
+
strip_accents (`bool`, *optional*):
|
755 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
756 |
+
value for `lowercase` (as in the original BERT).
|
757 |
+
"""
|
758 |
+
|
759 |
+
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
|
760 |
+
if never_split is None:
|
761 |
+
never_split = []
|
762 |
+
self.do_lower_case = do_lower_case
|
763 |
+
self.never_split = set(never_split)
|
764 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
765 |
+
self.strip_accents = strip_accents
|
766 |
+
|
767 |
+
def tokenize(self, text, never_split=None):
|
768 |
+
"""
|
769 |
+
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
|
770 |
+
WordPieceTokenizer.
|
771 |
+
|
772 |
+
Args:
|
773 |
+
never_split (`List[str]`, *optional*)
|
774 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
775 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
776 |
+
"""
|
777 |
+
# union() returns a new set by concatenating the two sets.
|
778 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
779 |
+
text = self._clean_text(text)
|
780 |
+
|
781 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
782 |
+
# models. This is also applied to the English models now, but it doesn't
|
783 |
+
# matter since the English models were not trained on any Chinese data
|
784 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
785 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
786 |
+
# words in the English Wikipedia.).
|
787 |
+
if self.tokenize_chinese_chars:
|
788 |
+
text = self._tokenize_chinese_chars(text)
|
789 |
+
orig_tokens = whitespace_tokenize(text)
|
790 |
+
split_tokens = []
|
791 |
+
for token in orig_tokens:
|
792 |
+
if token not in never_split:
|
793 |
+
if self.do_lower_case:
|
794 |
+
token = token.lower()
|
795 |
+
if self.strip_accents is not False:
|
796 |
+
token = self._run_strip_accents(token)
|
797 |
+
elif self.strip_accents:
|
798 |
+
token = self._run_strip_accents(token)
|
799 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
800 |
+
|
801 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
802 |
+
return output_tokens
|
803 |
+
|
804 |
+
def _run_strip_accents(self, text):
|
805 |
+
"""Strips accents from a piece of text."""
|
806 |
+
text = unicodedata.normalize("NFD", text)
|
807 |
+
output = []
|
808 |
+
for char in text:
|
809 |
+
cat = unicodedata.category(char)
|
810 |
+
if cat == "Mn":
|
811 |
+
continue
|
812 |
+
output.append(char)
|
813 |
+
return "".join(output)
|
814 |
+
|
815 |
+
def _run_split_on_punc(self, text, never_split=None):
|
816 |
+
"""Splits punctuation on a piece of text."""
|
817 |
+
if never_split is not None and text in never_split:
|
818 |
+
return [text]
|
819 |
+
chars = list(text)
|
820 |
+
i = 0
|
821 |
+
start_new_word = True
|
822 |
+
output = []
|
823 |
+
while i < len(chars):
|
824 |
+
char = chars[i]
|
825 |
+
if _is_punctuation(char):
|
826 |
+
output.append([char])
|
827 |
+
start_new_word = True
|
828 |
+
else:
|
829 |
+
if start_new_word:
|
830 |
+
output.append([])
|
831 |
+
start_new_word = False
|
832 |
+
output[-1].append(char)
|
833 |
+
i += 1
|
834 |
+
|
835 |
+
return ["".join(x) for x in output]
|
836 |
+
|
837 |
+
def _tokenize_chinese_chars(self, text):
|
838 |
+
"""Adds whitespace around any CJK character."""
|
839 |
+
output = []
|
840 |
+
for char in text:
|
841 |
+
cp = ord(char)
|
842 |
+
if self._is_chinese_char(cp):
|
843 |
+
output.append(" ")
|
844 |
+
output.append(char)
|
845 |
+
output.append(" ")
|
846 |
+
else:
|
847 |
+
output.append(char)
|
848 |
+
return "".join(output)
|
849 |
+
|
850 |
+
def _is_chinese_char(self, cp):
|
851 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
852 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
853 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
854 |
+
#
|
855 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
856 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
857 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
858 |
+
# space-separated words, so they are not treated specially and handled
|
859 |
+
# like the all of the other languages.
|
860 |
+
if (
|
861 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
862 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
863 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
864 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
865 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
866 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
867 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
868 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
869 |
+
): #
|
870 |
+
return True
|
871 |
+
|
872 |
+
return False
|
873 |
+
|
874 |
+
def _clean_text(self, text):
|
875 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
876 |
+
output = []
|
877 |
+
for char in text:
|
878 |
+
cp = ord(char)
|
879 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
880 |
+
continue
|
881 |
+
if _is_whitespace(char):
|
882 |
+
output.append(" ")
|
883 |
+
else:
|
884 |
+
output.append(char)
|
885 |
+
return "".join(output)
|
886 |
+
|
887 |
+
|
888 |
+
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
|
889 |
+
class WordpieceTokenizer(object):
|
890 |
+
"""Runs WordPiece tokenization."""
|
891 |
+
|
892 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
893 |
+
self.vocab = vocab
|
894 |
+
self.unk_token = unk_token
|
895 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
896 |
+
|
897 |
+
def tokenize(self, text):
|
898 |
+
"""
|
899 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
900 |
+
tokenization using the given vocabulary.
|
901 |
+
|
902 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
903 |
+
|
904 |
+
Args:
|
905 |
+
text: A single token or whitespace separated tokens. This should have
|
906 |
+
already been passed through *BasicTokenizer*.
|
907 |
+
|
908 |
+
Returns:
|
909 |
+
A list of wordpiece tokens.
|
910 |
+
"""
|
911 |
+
|
912 |
+
output_tokens = []
|
913 |
+
for token in whitespace_tokenize(text):
|
914 |
+
chars = list(token)
|
915 |
+
if len(chars) > self.max_input_chars_per_word:
|
916 |
+
output_tokens.append(self.unk_token)
|
917 |
+
continue
|
918 |
+
|
919 |
+
is_bad = False
|
920 |
+
start = 0
|
921 |
+
sub_tokens = []
|
922 |
+
while start < len(chars):
|
923 |
+
end = len(chars)
|
924 |
+
cur_substr = None
|
925 |
+
while start < end:
|
926 |
+
substr = "".join(chars[start:end])
|
927 |
+
if start > 0:
|
928 |
+
substr = "##" + substr
|
929 |
+
if substr in self.vocab:
|
930 |
+
cur_substr = substr
|
931 |
+
break
|
932 |
+
end -= 1
|
933 |
+
if cur_substr is None:
|
934 |
+
is_bad = True
|
935 |
+
break
|
936 |
+
sub_tokens.append(cur_substr)
|
937 |
+
start = end
|
938 |
+
|
939 |
+
if is_bad:
|
940 |
+
output_tokens.append(self.unk_token)
|
941 |
+
else:
|
942 |
+
output_tokens.extend(sub_tokens)
|
943 |
+
return output_tokens
|
944 |
+
|
945 |
+
|
946 |
+
class SentencepieceTokenizer(object):
|
947 |
+
"""
|
948 |
+
Runs sentencepiece tokenization. Based on transformers.models.albert.tokenization_albert.AlbertTokenizer.
|
949 |
+
"""
|
950 |
+
|
951 |
+
def __init__(
|
952 |
+
self,
|
953 |
+
vocab,
|
954 |
+
unk_token,
|
955 |
+
do_lower_case=False,
|
956 |
+
remove_space=True,
|
957 |
+
keep_accents=True,
|
958 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
959 |
+
):
|
960 |
+
self.vocab = vocab
|
961 |
+
self.unk_token = unk_token
|
962 |
+
self.do_lower_case = do_lower_case
|
963 |
+
self.remove_space = remove_space
|
964 |
+
self.keep_accents = keep_accents
|
965 |
+
|
966 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
967 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
968 |
+
self.sp_model.Load(self.vocab)
|
969 |
+
|
970 |
+
def preprocess_text(self, inputs):
|
971 |
+
if self.remove_space:
|
972 |
+
outputs = " ".join(inputs.strip().split())
|
973 |
+
else:
|
974 |
+
outputs = inputs
|
975 |
+
outputs = outputs.replace("``", '"').replace("''", '"')
|
976 |
+
|
977 |
+
if not self.keep_accents:
|
978 |
+
outputs = unicodedata.normalize("NFKD", outputs)
|
979 |
+
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
|
980 |
+
if self.do_lower_case:
|
981 |
+
outputs = outputs.lower()
|
982 |
+
|
983 |
+
return outputs
|
984 |
+
|
985 |
+
def tokenize(self, text):
|
986 |
+
"""
|
987 |
+
Tokenizes text by sentencepiece. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
988 |
+
Tokenization needs the given vocabulary.
|
989 |
+
|
990 |
+
Args:
|
991 |
+
text: A string needs to be tokenized.
|
992 |
+
|
993 |
+
Returns:
|
994 |
+
A list of sentencepiece tokens.
|
995 |
+
"""
|
996 |
+
text = self.preprocess_text(text)
|
997 |
+
pieces = self.sp_model.encode(text, out_type=str)
|
998 |
+
new_pieces = []
|
999 |
+
for piece in pieces:
|
1000 |
+
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
|
1001 |
+
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
|
1002 |
+
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
|
1003 |
+
if len(cur_pieces[0]) == 1:
|
1004 |
+
cur_pieces = cur_pieces[1:]
|
1005 |
+
else:
|
1006 |
+
cur_pieces[0] = cur_pieces[0][1:]
|
1007 |
+
cur_pieces.append(piece[-1])
|
1008 |
+
new_pieces.extend(cur_pieces)
|
1009 |
+
else:
|
1010 |
+
new_pieces.append(piece)
|
1011 |
+
|
1012 |
+
return new_pieces
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d8b678bd9ce14363d5e6e3dc53c7dd7c76f8ad11394ccffd200f15e9f6819eb
|
3 |
+
size 274894944
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcfafc8c0662d9c8f39621a64c74260f2ad120310c8dd24886de2dddaf599b4e
|
3 |
+
size 439391
|
tokenizer_config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_lower_case":true,
|
3 |
+
"remove_space":true,
|
4 |
+
"keep_accents":true,
|
5 |
+
"bos_token": "[CLS]",
|
6 |
+
"eos_token": "[SEP]",
|
7 |
+
"unk_token": "<unk>",
|
8 |
+
"sep_token": "[SEP]",
|
9 |
+
"pad_token": "<pad>",
|
10 |
+
"cls_token": "[CLS]",
|
11 |
+
"mask_token":{
|
12 |
+
"content":"[MASK]",
|
13 |
+
"single_word":false,
|
14 |
+
"lstrip":true,
|
15 |
+
"rstrip":false,
|
16 |
+
"normalized":false,
|
17 |
+
"__type":"AddedToken"
|
18 |
+
},
|
19 |
+
"tokenize_chinese_chars":false,
|
20 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
21 |
+
"word_tokenizer_type": "mecab",
|
22 |
+
"subword_tokenizer_type": "sentencepiece",
|
23 |
+
"mecab_kwargs": {
|
24 |
+
"mecab_dic": "unidic_lite"
|
25 |
+
},
|
26 |
+
"auto_map": {
|
27 |
+
"AutoTokenizer": [
|
28 |
+
"distilbert_japanese_tokenizer.DistilBertJapaneseTokenizer",
|
29 |
+
null
|
30 |
+
]
|
31 |
+
}
|
32 |
+
}
|