# coding=utf-8 # Copyright 2023 LINE Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Almost copied from [transformers.BertJapaneseTokenizer](https://github.com/huggingface/transformers/blob/v4.26.1/src/transformers/models/bert_japanese/tokenization_bert_japanese.py#) # This code is distributed under the Apache License 2.0. """Tokenization classes.""" import collections import copy import os import unicodedata from typing import Any, Dict, List, Optional, Tuple from transformers.tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from transformers.utils import is_sentencepiece_available, logging try: import sentencepiece as spm except ModuleNotFoundError as error: raise error.__class__( "The sentencepiece is not installed. " "See https://github.com/google/sentencepiece for installation." ) logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "spm_file": "spiece.model"} SPIECE_UNDERLINE = "▁" PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/vocab.txt", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/vocab.txt" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/vocab.txt" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/vocab.txt" ), } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "cl-tohoku/bert-base-japanese": 512, "cl-tohoku/bert-base-japanese-whole-word-masking": 512, "cl-tohoku/bert-base-japanese-char": 512, "cl-tohoku/bert-base-japanese-char-whole-word-masking": 512, } PRETRAINED_INIT_CONFIGURATION = { "cl-tohoku/bert-base-japanese": { "do_lower_case": False, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "wordpiece", }, "cl-tohoku/bert-base-japanese-whole-word-masking": { "do_lower_case": False, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "wordpiece", }, "cl-tohoku/bert-base-japanese-char": { "do_lower_case": False, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "character", }, "cl-tohoku/bert-base-japanese-char-whole-word-masking": { "do_lower_case": False, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "character", }, } # Copied from transformers.models.bert.tokenization_bert.load_vocab def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class DistilBertJapaneseTokenizer(PreTrainedTokenizer): r""" Construct a BERT tokenizer for Japanese text. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to: this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to a one-wordpiece-per-line vocabulary file. spm_file (`str`, *optional*): Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm or .model extension) that contains the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether to lower case the input. Only has an effect when do_basic_tokenize=True. do_word_tokenize (`bool`, *optional*, defaults to `True`): Whether to do word tokenization. do_subword_tokenize (`bool`, *optional*, defaults to `True`): Whether to do subword tokenization. word_tokenizer_type (`str`, *optional*, defaults to `"basic"`): Type of word tokenizer. Choose from ["basic", "mecab", "sudachi", "jumanpp"]. subword_tokenizer_type (`str`, *optional*, defaults to `"wordpiece"`): Type of subword tokenizer. Choose from ["wordpiece", "character", "sentencepiece",]. mecab_kwargs (`dict`, *optional*): Dictionary passed to the `MecabTokenizer` constructor. sudachi_kwargs (`dict`, *optional*): Dictionary passed to the `SudachiTokenizer` constructor. jumanpp_kwargs (`dict`, *optional*): Dictionary passed to the `JumanppTokenizer` constructor. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = [ "input_ids" , "attention_mask" ] def __init__( self, vocab_file, spm_file=None, do_lower_case=False, do_word_tokenize=True, do_subword_tokenize=True, word_tokenizer_type="basic", subword_tokenizer_type="wordpiece", never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", mecab_kwargs=None, sudachi_kwargs=None, jumanpp_kwargs=None, **kwargs ): super().__init__( spm_file=spm_file, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, do_lower_case=do_lower_case, do_word_tokenize=do_word_tokenize, do_subword_tokenize=do_subword_tokenize, word_tokenizer_type=word_tokenizer_type, subword_tokenizer_type=subword_tokenizer_type, never_split=never_split, mecab_kwargs=mecab_kwargs, sudachi_kwargs=sudachi_kwargs, jumanpp_kwargs=jumanpp_kwargs, **kwargs, ) if subword_tokenizer_type == "sentencepiece": if not os.path.isfile(spm_file): raise ValueError( f"Can't find a vocabulary file at path '{spm_file}'. To load the vocabulary from a Google" " pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.spm_file = spm_file else: if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google" " pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_word_tokenize = do_word_tokenize self.word_tokenizer_type = word_tokenizer_type self.lower_case = do_lower_case self.never_split = never_split self.mecab_kwargs = copy.deepcopy(mecab_kwargs) self.sudachi_kwargs = copy.deepcopy(sudachi_kwargs) self.jumanpp_kwargs = copy.deepcopy(jumanpp_kwargs) if do_word_tokenize: if word_tokenizer_type == "basic": self.word_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=False ) elif word_tokenizer_type == "mecab": self.word_tokenizer = MecabTokenizer( do_lower_case=do_lower_case, never_split=never_split, **(mecab_kwargs or {}) ) elif word_tokenizer_type == "sudachi": self.word_tokenizer = SudachiTokenizer( do_lower_case=do_lower_case, never_split=never_split, **(sudachi_kwargs or {}) ) elif word_tokenizer_type == "jumanpp": self.word_tokenizer = JumanppTokenizer( do_lower_case=do_lower_case, never_split=never_split, **(jumanpp_kwargs or {}) ) else: raise ValueError(f"Invalid word_tokenizer_type '{word_tokenizer_type}' is specified.") self.do_subword_tokenize = do_subword_tokenize self.subword_tokenizer_type = subword_tokenizer_type if do_subword_tokenize: if subword_tokenizer_type == "wordpiece": self.subword_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token) elif subword_tokenizer_type == "character": self.subword_tokenizer = CharacterTokenizer(vocab=self.vocab, unk_token=self.unk_token) elif subword_tokenizer_type == "sentencepiece": self.subword_tokenizer = SentencepieceTokenizer(vocab=self.spm_file, unk_token=self.unk_token) else: raise ValueError(f"Invalid subword_tokenizer_type '{subword_tokenizer_type}' is specified.") @property def do_lower_case(self): return self.lower_case def __getstate__(self): state = dict(self.__dict__) if self.word_tokenizer_type in ["mecab", "sudachi", "jumanpp"]: del state["word_tokenizer"] return state def __setstate__(self, state): self.__dict__ = state if self.word_tokenizer_type == "mecab": self.word_tokenizer = MecabTokenizer( do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.mecab_kwargs or {}) ) elif self.word_tokenizer_type == "sudachi": self.word_tokenizer = SudachiTokenizer( do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.sudachi_kwargs or {}) ) elif self.word_tokenizer_type == "jumanpp": self.word_tokenizer = JumanppTokenizer( do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.jumanpp_kwargs or {}) ) def _tokenize(self, text): if self.do_word_tokenize: tokens = self.word_tokenizer.tokenize(text, never_split=self.all_special_tokens) else: tokens = [text] if self.do_subword_tokenize: split_tokens = [sub_token for token in tokens for sub_token in self.subword_tokenizer.tokenize(token)] else: split_tokens = tokens return split_tokens @property def vocab_size(self): if self.subword_tokenizer_type == "sentencepiece": return len(self.subword_tokenizer.sp_model) return len(self.vocab) def get_vocab(self): if self.subword_tokenizer_type == "sentencepiece": vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab return dict(self.vocab, **self.added_tokens_encoder) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if self.subword_tokenizer_type == "sentencepiece": return self.subword_tokenizer.sp_model.PieceToId(token) return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if self.subword_tokenizer_type == "sentencepiece": return self.subword_tokenizer.sp_model.IdToPiece(index) return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" if self.subword_tokenizer_type == "sentencepiece": return self.subword_tokenizer.sp_model.decode(tokens) out_string = " ".join(tokens).replace(" ##", "").strip() return out_string # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if os.path.isdir(save_directory): if self.subword_tokenizer_type == "sentencepiece": vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["spm_file"] ) else: vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"], ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory if self.subword_tokenizer_type == "sentencepiece": with open(vocab_file, "wb") as writer: content_spiece_model = self.subword_tokenizer.sp_model.serialized_model_proto() writer.write(content_spiece_model) else: with open(vocab_file, "w", encoding="utf-8") as writer: index = 0 for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) class MecabTokenizer: """Runs basic tokenization with MeCab morphological parser.""" def __init__( self, do_lower_case=False, never_split=None, normalize_text=True, mecab_dic: Optional[str] = "unidic_lite", mecab_option: Optional[str] = None, ): """ Constructs a MecabTokenizer. Args: **do_lower_case**: (*optional*) boolean (default True) Whether to lowercase the input. **never_split**: (*optional*) list of str Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of tokens not to split. **normalize_text**: (*optional*) boolean (default True) Whether to apply unicode normalization to text before tokenization. **mecab_dic**: (*optional*) string (default "unidic_lite") Name of dictionary to be used for MeCab initialization. If you are using a system-installed dictionary, set this option to `None` and modify *mecab_option*. **mecab_option**: (*optional*) string String passed to MeCab constructor. """ self.do_lower_case = do_lower_case self.never_split = never_split if never_split is not None else [] self.normalize_text = normalize_text try: import fugashi except ModuleNotFoundError as error: raise error.__class__( "You need to install fugashi to use MecabTokenizer. " "See https://pypi.org/project/fugashi/ for installation." ) mecab_option = mecab_option or "" if mecab_dic is not None: if mecab_dic == "unidic_lite": try: import unidic_lite except ModuleNotFoundError as error: raise error.__class__( "The unidic_lite dictionary is not installed. " "See https://github.com/polm/unidic-lite for installation." ) dic_dir = unidic_lite.DICDIR elif mecab_dic == "unidic": try: import unidic except ModuleNotFoundError as error: raise error.__class__( "The unidic dictionary is not installed. " "See https://github.com/polm/unidic-py for installation." ) dic_dir = unidic.DICDIR if not os.path.isdir(dic_dir): raise RuntimeError( "The unidic dictionary itself is not found. " "See https://github.com/polm/unidic-py for installation." ) else: raise ValueError("Invalid mecab_dic is specified.") mecabrc = os.path.join(dic_dir, "mecabrc") mecab_option = f'-d "{dic_dir}" -r "{mecabrc}" ' + mecab_option self.mecab = fugashi.GenericTagger(mecab_option) def tokenize(self, text, never_split=None, **kwargs): """Tokenizes a piece of text.""" if self.normalize_text: text = unicodedata.normalize("NFKC", text) never_split = self.never_split + (never_split if never_split is not None else []) tokens = [] for word in self.mecab(text): token = word.surface if self.do_lower_case and token not in never_split: token = token.lower() tokens.append(token) return tokens class CharacterTokenizer: """Runs Character tokenization.""" def __init__(self, vocab, unk_token, normalize_text=True): """ Constructs a CharacterTokenizer. Args: **vocab**: Vocabulary object. **unk_token**: str A special symbol for out-of-vocabulary token. **normalize_text**: (`optional`) boolean (default True) Whether to apply unicode normalization to text before tokenization. """ self.vocab = vocab self.unk_token = unk_token self.normalize_text = normalize_text def tokenize(self, text): """ Tokenizes a piece of text into characters. For example, `input = "apple""` wil return as output `["a", "p", "p", "l", "e"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of characters. """ if self.normalize_text: text = unicodedata.normalize("NFKC", text) output_tokens = [] for char in text: if char not in self.vocab: output_tokens.append(self.unk_token) continue output_tokens.append(char) return output_tokens # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if never_split is not None and text in never_split: return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens class SentencepieceTokenizer(object): """ Runs sentencepiece tokenization. Based on transformers.models.albert.tokenization_albert.AlbertTokenizer. """ def __init__( self, vocab, unk_token, do_lower_case=False, remove_space=True, keep_accents=True, sp_model_kwargs: Optional[Dict[str, Any]] = None, ): self.vocab = vocab self.unk_token = unk_token self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab) def preprocess_text(self, inputs): if self.remove_space: outputs = " ".join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if not self.keep_accents: outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if self.do_lower_case: outputs = outputs.lower() return outputs def tokenize(self, text): """ Tokenizes text by sentencepiece. Based on [SentencePiece](https://github.com/google/sentencepiece). Tokenization needs the given vocabulary. Args: text: A string needs to be tokenized. Returns: A list of sentencepiece tokens. """ text = self.preprocess_text(text) pieces = self.sp_model.encode(text, out_type=str) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) return new_pieces