averoo commited on
Commit
b803940
·
verified ·
1 Parent(s): 32e060e

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json CHANGED
@@ -3,5 +3,8 @@
3
  "pooling_mode_cls_token": true,
4
  "pooling_mode_mean_tokens": false,
5
  "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false
 
 
 
7
  }
 
3
  "pooling_mode_cls_token": true,
4
  "pooling_mode_mean_tokens": false,
5
  "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
  }
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54ca435886648a25b6c7fbf1e52ca63915bddf61c7b7d61391c7f759a87418f7
3
+ size 2362528
README.md CHANGED
@@ -1,92 +1,368 @@
1
  ---
 
 
2
  pipeline_tag: sentence-similarity
3
  tags:
4
  - sentence-transformers
5
- - feature-extraction
6
  - sentence-similarity
7
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
 
10
- # LaBSE finetuned on Udmurt-Russian parallel corpora (by [codemurt](https://huggingface.co/codemurt))
11
 
12
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
- <!--- Describe your model here -->
15
 
16
- ## Usage (Sentence-Transformers)
 
 
 
 
 
 
 
 
17
 
18
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
 
 
 
 
 
 
19
 
20
  ```
21
- pip install -U sentence-transformers
 
 
 
 
 
22
  ```
23
 
24
- Then you can use the model like this:
 
 
25
 
 
 
 
 
 
 
 
26
  ```python
27
  from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
 
 
 
 
 
 
 
31
  embeddings = model.encode(sentences)
32
- print(embeddings)
 
 
 
 
 
 
33
  ```
34
 
 
 
35
 
 
36
 
37
- ## Evaluation Results
 
38
 
39
- <!--- Describe how your model was evaluated -->
 
40
 
41
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
42
 
 
43
 
44
- ## Training
45
- The model was trained with the parameters:
46
 
47
- **DataLoader**:
 
48
 
49
- `torch.utils.data.dataloader.DataLoader` of length 3615 with parameters:
50
- ```
51
- {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
52
- ```
53
 
54
- **Loss**:
 
55
 
56
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
57
- ```
58
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  ```
60
 
61
- Parameters of the fit()-Method:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  ```
63
- {
64
- "epochs": 1,
65
- "evaluation_steps": 100,
66
- "evaluator": "__main__.ChainScoreEvaluator",
67
- "max_grad_norm": 1,
68
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
69
- "optimizer_params": {
70
- "lr": 2e-05
71
- },
72
- "scheduler": "warmupcosine",
73
- "steps_per_epoch": null,
74
- "warmup_steps": 200,
75
- "weight_decay": 0.01
76
  }
77
  ```
78
 
 
 
79
 
80
- ## Full Model Architecture
81
- ```
82
- SentenceTransformer(
83
- (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
84
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
85
- (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
86
- (3): Normalize()
87
- )
88
- ```
89
 
90
- ## Citing & Authors
 
91
 
92
- <!--- Describe where people can find more information -->
 
 
1
  ---
2
+ base_model: sentence-transformers/LaBSE
3
+ library_name: sentence-transformers
4
  pipeline_tag: sentence-similarity
5
  tags:
6
  - sentence-transformers
 
7
  - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:101540
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: Пилэн пытьыез ышиз.
14
+ sentences:
15
+ - — А знаете, ребята?
16
+ - Следы мальчика потеряны.
17
+ - — Ты прости меня, — иначе нельзя!
18
+ - source_sentence: Огпол лушказ — пӧрмиз, нош дорын серекъязы, быгатэмез понна ушъязы,
19
+ со тӥни лушкаськонэз сямлы пӧрмытӥз.
20
+ sentences:
21
+ - Бабушка взяла хлеб и сунула одной корове.
22
+ - '- Сходи к Евгению Васильевичу, скажи - прошу его прийти!'
23
+ - Раз попробовал - ладно вышло, а дома посмеялись, похвалили за удачу, он и взял
24
+ воровство в обычай.
25
+ - source_sentence: — Котькуд милиционер тонэн ӟечбуръяське.
26
+ sentences:
27
+ - — Что ни милиционер, так обязательно здоровается с тобой.
28
+ - — Ах, дорогой ПНШ, — сказал Егоров, кладя свою русую с седеющим хохолком голову
29
+ на оперативную сводку, — как хочется спать!
30
+ - Умею держать в руках и саблю острую.
31
+ - source_sentence: Римской владычестволы пумит Испания но ӝутскиз табере.
32
+ sentences:
33
+ - Теперь против римского владычества поднялась Испания.
34
+ - Во время этих скитаний я сделал много полезных открытий.
35
+ - Потом они вместе с Алёнкой сели на бревно под солнышком сушиться.
36
+ - source_sentence: Прошин со пыӵалэн туж умой ыбылӥз, сӧсырмем бераз кошкыкуз со пыӵалзэ
37
+ усто снайперлы — Жильцовлы сётыса кельтӥз.
38
+ sentences:
39
+ - Стрелял из нее Прошин отлично и, когда ушел в тыл после ранения, передал отличному
40
+ снайперу - Жильцову.
41
+ - – Чего стучишь? – сонным голосом спросила она.
42
+ - Валек по-прежнему лежал на траве и задумчиво следил за парившим в небе ястребом.
43
  ---
44
 
45
+ # SentenceTransformer based on sentence-transformers/LaBSE
46
 
47
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
48
 
49
+ ## Model Details
50
 
51
+ ### Model Description
52
+ - **Model Type:** Sentence Transformer
53
+ - **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision b7f947194ceae0ddf90bafe213722569e274ad28 -->
54
+ - **Maximum Sequence Length:** 256 tokens
55
+ - **Output Dimensionality:** 768 dimensions
56
+ - **Similarity Function:** Cosine Similarity
57
+ <!-- - **Training Dataset:** Unknown -->
58
+ <!-- - **Language:** Unknown -->
59
+ <!-- - **License:** Unknown -->
60
 
61
+ ### Model Sources
62
+
63
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
64
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
65
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
66
+
67
+ ### Full Model Architecture
68
 
69
  ```
70
+ SentenceTransformer(
71
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
72
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
73
+ (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
74
+ (3): Normalize()
75
+ )
76
  ```
77
 
78
+ ## Usage
79
+
80
+ ### Direct Usage (Sentence Transformers)
81
 
82
+ First install the Sentence Transformers library:
83
+
84
+ ```bash
85
+ pip install -U sentence-transformers
86
+ ```
87
+
88
+ Then you can load this model and run inference.
89
  ```python
90
  from sentence_transformers import SentenceTransformer
 
91
 
92
+ # Download from the 🤗 Hub
93
+ model = SentenceTransformer("sentence_transformers_model_id")
94
+ # Run inference
95
+ sentences = [
96
+ 'Прошин со пыӵалэн туж умой ыбылӥз, сӧсырмем бераз кошкыкуз со пыӵалзэ усто снайперлы — Жильцовлы сётыса кельтӥз.',
97
+ 'Стрелял из нее Прошин отлично и, когда ушел в тыл после ранения, передал отличному снайперу - Жильцову.',
98
+ '– Чего стучишь? – сонным голосом спросила она.',
99
+ ]
100
  embeddings = model.encode(sentences)
101
+ print(embeddings.shape)
102
+ # [3, 768]
103
+
104
+ # Get the similarity scores for the embeddings
105
+ similarities = model.similarity(embeddings, embeddings)
106
+ print(similarities.shape)
107
+ # [3, 3]
108
  ```
109
 
110
+ <!--
111
+ ### Direct Usage (Transformers)
112
 
113
+ <details><summary>Click to see the direct usage in Transformers</summary>
114
 
115
+ </details>
116
+ -->
117
 
118
+ <!--
119
+ ### Downstream Usage (Sentence Transformers)
120
 
121
+ You can finetune this model on your own dataset.
122
 
123
+ <details><summary>Click to expand</summary>
124
 
125
+ </details>
126
+ -->
127
 
128
+ <!--
129
+ ### Out-of-Scope Use
130
 
131
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
132
+ -->
 
 
133
 
134
+ <!--
135
+ ## Bias, Risks and Limitations
136
 
137
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
138
+ -->
139
+
140
+ <!--
141
+ ### Recommendations
142
+
143
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
144
+ -->
145
+
146
+ ## Training Details
147
+
148
+ ### Training Dataset
149
+
150
+ #### Unnamed Dataset
151
+
152
+ * Size: 101,540 training samples
153
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
154
+ * Approximate statistics based on the first 1000 samples:
155
+ | | sentence_0 | sentence_1 | label |
156
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
157
+ | type | string | string | float |
158
+ | details | <ul><li>min: 4 tokens</li><li>mean: 31.78 tokens</li><li>max: 219 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 22.1 tokens</li><li>max: 147 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
159
+ * Samples:
160
+ | sentence_0 | sentence_1 | label |
161
+ |:--------------------------------------------------------|:-----------------------------------------------------------------|:-----------------|
162
+ | <code>Нырысь со чебер потэ но мылкыдэз шулдыртэ.</code> | <code>Сначала это кажется красивым и, возбуждая, веселит.</code> | <code>1.0</code> |
163
+ | <code>Тани султо но али ик кошко.</code> | <code>Вот возьму и сейчас уеду.</code> | <code>1.0</code> |
164
+ | <code>— Мынӥсько! — вазиз анай.</code> | <code>— Иду! — ответила мать.</code> | <code>1.0</code> |
165
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
166
+ ```json
167
+ {
168
+ "scale": 20.0,
169
+ "similarity_fct": "cos_sim"
170
+ }
171
  ```
172
 
173
+ ### Training Hyperparameters
174
+ #### Non-Default Hyperparameters
175
+
176
+ - `eval_strategy`: steps
177
+ - `per_device_train_batch_size`: 10
178
+ - `per_device_eval_batch_size`: 10
179
+ - `num_train_epochs`: 1
180
+ - `fp16`: True
181
+ - `multi_dataset_batch_sampler`: round_robin
182
+
183
+ #### All Hyperparameters
184
+ <details><summary>Click to expand</summary>
185
+
186
+ - `overwrite_output_dir`: False
187
+ - `do_predict`: False
188
+ - `eval_strategy`: steps
189
+ - `prediction_loss_only`: True
190
+ - `per_device_train_batch_size`: 10
191
+ - `per_device_eval_batch_size`: 10
192
+ - `per_gpu_train_batch_size`: None
193
+ - `per_gpu_eval_batch_size`: None
194
+ - `gradient_accumulation_steps`: 1
195
+ - `eval_accumulation_steps`: None
196
+ - `torch_empty_cache_steps`: None
197
+ - `learning_rate`: 5e-05
198
+ - `weight_decay`: 0.0
199
+ - `adam_beta1`: 0.9
200
+ - `adam_beta2`: 0.999
201
+ - `adam_epsilon`: 1e-08
202
+ - `max_grad_norm`: 1
203
+ - `num_train_epochs`: 1
204
+ - `max_steps`: -1
205
+ - `lr_scheduler_type`: linear
206
+ - `lr_scheduler_kwargs`: {}
207
+ - `warmup_ratio`: 0.0
208
+ - `warmup_steps`: 0
209
+ - `log_level`: passive
210
+ - `log_level_replica`: warning
211
+ - `log_on_each_node`: True
212
+ - `logging_nan_inf_filter`: True
213
+ - `save_safetensors`: True
214
+ - `save_on_each_node`: False
215
+ - `save_only_model`: False
216
+ - `restore_callback_states_from_checkpoint`: False
217
+ - `no_cuda`: False
218
+ - `use_cpu`: False
219
+ - `use_mps_device`: False
220
+ - `seed`: 42
221
+ - `data_seed`: None
222
+ - `jit_mode_eval`: False
223
+ - `use_ipex`: False
224
+ - `bf16`: False
225
+ - `fp16`: True
226
+ - `fp16_opt_level`: O1
227
+ - `half_precision_backend`: auto
228
+ - `bf16_full_eval`: False
229
+ - `fp16_full_eval`: False
230
+ - `tf32`: None
231
+ - `local_rank`: 0
232
+ - `ddp_backend`: None
233
+ - `tpu_num_cores`: None
234
+ - `tpu_metrics_debug`: False
235
+ - `debug`: []
236
+ - `dataloader_drop_last`: False
237
+ - `dataloader_num_workers`: 0
238
+ - `dataloader_prefetch_factor`: None
239
+ - `past_index`: -1
240
+ - `disable_tqdm`: False
241
+ - `remove_unused_columns`: True
242
+ - `label_names`: None
243
+ - `load_best_model_at_end`: False
244
+ - `ignore_data_skip`: False
245
+ - `fsdp`: []
246
+ - `fsdp_min_num_params`: 0
247
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
248
+ - `fsdp_transformer_layer_cls_to_wrap`: None
249
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
250
+ - `deepspeed`: None
251
+ - `label_smoothing_factor`: 0.0
252
+ - `optim`: adamw_torch
253
+ - `optim_args`: None
254
+ - `adafactor`: False
255
+ - `group_by_length`: False
256
+ - `length_column_name`: length
257
+ - `ddp_find_unused_parameters`: None
258
+ - `ddp_bucket_cap_mb`: None
259
+ - `ddp_broadcast_buffers`: False
260
+ - `dataloader_pin_memory`: True
261
+ - `dataloader_persistent_workers`: False
262
+ - `skip_memory_metrics`: True
263
+ - `use_legacy_prediction_loop`: False
264
+ - `push_to_hub`: False
265
+ - `resume_from_checkpoint`: None
266
+ - `hub_model_id`: None
267
+ - `hub_strategy`: every_save
268
+ - `hub_private_repo`: False
269
+ - `hub_always_push`: False
270
+ - `gradient_checkpointing`: False
271
+ - `gradient_checkpointing_kwargs`: None
272
+ - `include_inputs_for_metrics`: False
273
+ - `eval_do_concat_batches`: True
274
+ - `fp16_backend`: auto
275
+ - `push_to_hub_model_id`: None
276
+ - `push_to_hub_organization`: None
277
+ - `mp_parameters`:
278
+ - `auto_find_batch_size`: False
279
+ - `full_determinism`: False
280
+ - `torchdynamo`: None
281
+ - `ray_scope`: last
282
+ - `ddp_timeout`: 1800
283
+ - `torch_compile`: False
284
+ - `torch_compile_backend`: None
285
+ - `torch_compile_mode`: None
286
+ - `dispatch_batches`: None
287
+ - `split_batches`: None
288
+ - `include_tokens_per_second`: False
289
+ - `include_num_input_tokens_seen`: False
290
+ - `neftune_noise_alpha`: None
291
+ - `optim_target_modules`: None
292
+ - `batch_eval_metrics`: False
293
+ - `eval_on_start`: False
294
+ - `eval_use_gather_object`: False
295
+ - `prompts`: None
296
+ - `batch_sampler`: batch_sampler
297
+ - `multi_dataset_batch_sampler`: round_robin
298
+
299
+ </details>
300
+
301
+ ### Training Logs
302
+ | Epoch | Step | Training Loss |
303
+ |:------:|:----:|:-------------:|
304
+ | 0.0787 | 100 | - |
305
+ | 0.1575 | 200 | - |
306
+ | 0.2362 | 300 | - |
307
+ | 0.3150 | 400 | - |
308
+ | 0.3937 | 500 | 0.3765 |
309
+ | 0.4724 | 600 | - |
310
+ | 0.5512 | 700 | - |
311
+ | 0.6299 | 800 | - |
312
+
313
+
314
+ ### Framework Versions
315
+ - Python: 3.9.18
316
+ - Sentence Transformers: 3.4.0
317
+ - Transformers: 4.44.0
318
+ - PyTorch: 2.4.0+cu121
319
+ - Accelerate: 0.33.0
320
+ - Datasets: 3.2.0
321
+ - Tokenizers: 0.19.1
322
+
323
+ ## Citation
324
+
325
+ ### BibTeX
326
+
327
+ #### Sentence Transformers
328
+ ```bibtex
329
+ @inproceedings{reimers-2019-sentence-bert,
330
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
331
+ author = "Reimers, Nils and Gurevych, Iryna",
332
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
333
+ month = "11",
334
+ year = "2019",
335
+ publisher = "Association for Computational Linguistics",
336
+ url = "https://arxiv.org/abs/1908.10084",
337
+ }
338
  ```
339
+
340
+ #### MultipleNegativesRankingLoss
341
+ ```bibtex
342
+ @misc{henderson2017efficient,
343
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
344
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
345
+ year={2017},
346
+ eprint={1705.00652},
347
+ archivePrefix={arXiv},
348
+ primaryClass={cs.CL}
 
 
 
349
  }
350
  ```
351
 
352
+ <!--
353
+ ## Glossary
354
 
355
+ *Clearly define terms in order to be accessible across audiences.*
356
+ -->
357
+
358
+ <!--
359
+ ## Model Card Authors
360
+
361
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
362
+ -->
 
363
 
364
+ <!--
365
+ ## Model Card Contact
366
 
367
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
368
+ -->
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/home/jovyan/.cache/torch/sentence_transformers/sentence-transformers_LaBSE/",
3
  "architectures": [
4
  "BertModel"
5
  ],
@@ -25,7 +25,7 @@
25
  "pooler_type": "first_token_transform",
26
  "position_embedding_type": "absolute",
27
  "torch_dtype": "float32",
28
- "transformers_version": "4.37.1",
29
  "type_vocab_size": 2,
30
  "use_cache": true,
31
  "vocab_size": 501153
 
1
  {
2
+ "_name_or_path": "sentence-transformers/LaBSE",
3
  "architectures": [
4
  "BertModel"
5
  ],
 
25
  "pooler_type": "first_token_transform",
26
  "position_embedding_type": "absolute",
27
  "torch_dtype": "float32",
28
+ "transformers_version": "4.44.0",
29
  "type_vocab_size": 2,
30
  "use_cache": true,
31
  "vocab_size": 501153
config_sentence_transformers.json CHANGED
@@ -1,7 +1,10 @@
1
  {
2
  "__version__": {
3
- "sentence_transformers": "2.0.0",
4
- "transformers": "4.7.0",
5
- "pytorch": "1.9.0+cu102"
6
- }
 
 
 
7
  }
 
1
  {
2
  "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.44.0",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4a48ac248c99b8025ad005116e4c97a246ccb4524a82b6669a777535848522d5
3
  size 1883730160
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a02134ed5c43d19f204ed7b24ec9b7d3b2d88c9d4ce4732907af51d61248154
3
  size 1883730160
tokenizer_config.json CHANGED
@@ -47,7 +47,7 @@
47
  "do_lower_case": false,
48
  "full_tokenizer_file": null,
49
  "mask_token": "[MASK]",
50
- "model_max_length": 512,
51
  "never_split": null,
52
  "pad_token": "[PAD]",
53
  "sep_token": "[SEP]",
 
47
  "do_lower_case": false,
48
  "full_tokenizer_file": null,
49
  "mask_token": "[MASK]",
50
+ "model_max_length": 256,
51
  "never_split": null,
52
  "pad_token": "[PAD]",
53
  "sep_token": "[SEP]",