Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +4 -1
- 2_Dense/model.safetensors +3 -0
- README.md +327 -51
- config.json +2 -2
- config_sentence_transformers.json +7 -4
- model.safetensors +1 -1
- tokenizer_config.json +1 -1
1_Pooling/config.json
CHANGED
@@ -3,5 +3,8 @@
|
|
3 |
"pooling_mode_cls_token": true,
|
4 |
"pooling_mode_mean_tokens": false,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
-
"pooling_mode_mean_sqrt_len_tokens": false
|
|
|
|
|
|
|
7 |
}
|
|
|
3 |
"pooling_mode_cls_token": true,
|
4 |
"pooling_mode_mean_tokens": false,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54ca435886648a25b6c7fbf1e52ca63915bddf61c7b7d61391c7f759a87418f7
|
3 |
+
size 2362528
|
README.md
CHANGED
@@ -1,92 +1,368 @@
|
|
1 |
---
|
|
|
|
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
- sentence-transformers
|
5 |
-
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
This is a [sentence-transformers](https://www.SBERT.net) model
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
```
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
```
|
23 |
|
24 |
-
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
```python
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
embeddings = model.encode(sentences)
|
32 |
-
print(embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
```
|
34 |
|
|
|
|
|
35 |
|
|
|
36 |
|
37 |
-
|
|
|
38 |
|
39 |
-
|
|
|
40 |
|
41 |
-
|
42 |
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
|
47 |
-
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
{'batch_size': 10, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
52 |
-
```
|
53 |
|
54 |
-
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
```
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
```
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
},
|
72 |
-
|
73 |
-
"steps_per_epoch": null,
|
74 |
-
"warmup_steps": 200,
|
75 |
-
"weight_decay": 0.01
|
76 |
}
|
77 |
```
|
78 |
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
```
|
89 |
|
90 |
-
|
|
|
91 |
|
92 |
-
|
|
|
|
1 |
---
|
2 |
+
base_model: sentence-transformers/LaBSE
|
3 |
+
library_name: sentence-transformers
|
4 |
pipeline_tag: sentence-similarity
|
5 |
tags:
|
6 |
- sentence-transformers
|
|
|
7 |
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:101540
|
11 |
+
- loss:MultipleNegativesRankingLoss
|
12 |
+
widget:
|
13 |
+
- source_sentence: Пилэн пытьыез ышиз.
|
14 |
+
sentences:
|
15 |
+
- — А знаете, ребята?
|
16 |
+
- Следы мальчика потеряны.
|
17 |
+
- — Ты прости меня, — иначе нельзя!
|
18 |
+
- source_sentence: Огпол лушказ — пӧрмиз, нош дорын серекъязы, быгатэмез понна ушъязы,
|
19 |
+
со тӥни лушкаськонэз сямлы пӧрмытӥз.
|
20 |
+
sentences:
|
21 |
+
- Бабушка взяла хлеб и сунула одной корове.
|
22 |
+
- '- Сходи к Евгению Васильевичу, скажи - прошу его прийти!'
|
23 |
+
- Раз попробовал - ладно вышло, а дома посмеялись, похвалили за удачу, он и взял
|
24 |
+
воровство в обычай.
|
25 |
+
- source_sentence: — Котькуд милиционер тонэн ӟечбуръяське.
|
26 |
+
sentences:
|
27 |
+
- — Что ни милиционер, так обязательно здоровается с тобой.
|
28 |
+
- — Ах, дорогой ПНШ, — сказал Егоров, кладя свою русую с седеющим хохолком голову
|
29 |
+
на оперативную сводку, — как хочется спать!
|
30 |
+
- Умею держать в руках и саблю острую.
|
31 |
+
- source_sentence: Римской владычестволы пумит Испания но ӝутскиз табере.
|
32 |
+
sentences:
|
33 |
+
- Теперь против римского владычества поднялась Испания.
|
34 |
+
- Во время этих скитаний я сделал много полезных открытий.
|
35 |
+
- Потом они вместе с Алёнкой сели на бревно под солнышком сушиться.
|
36 |
+
- source_sentence: Прошин со пыӵалэн туж умой ыбылӥз, сӧсырмем бераз кошкыкуз со пыӵалзэ
|
37 |
+
усто снайперлы — Жильцовлы сётыса кельтӥз.
|
38 |
+
sentences:
|
39 |
+
- Стрелял из нее Прошин отлично и, когда ушел в тыл после ранения, передал отличному
|
40 |
+
снайперу - Жильцову.
|
41 |
+
- – Чего стучишь? – сонным голосом спросила она.
|
42 |
+
- Валек по-прежнему лежал на траве и задумчиво следил за парившим в небе ястребом.
|
43 |
---
|
44 |
|
45 |
+
# SentenceTransformer based on sentence-transformers/LaBSE
|
46 |
|
47 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
48 |
|
49 |
+
## Model Details
|
50 |
|
51 |
+
### Model Description
|
52 |
+
- **Model Type:** Sentence Transformer
|
53 |
+
- **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision b7f947194ceae0ddf90bafe213722569e274ad28 -->
|
54 |
+
- **Maximum Sequence Length:** 256 tokens
|
55 |
+
- **Output Dimensionality:** 768 dimensions
|
56 |
+
- **Similarity Function:** Cosine Similarity
|
57 |
+
<!-- - **Training Dataset:** Unknown -->
|
58 |
+
<!-- - **Language:** Unknown -->
|
59 |
+
<!-- - **License:** Unknown -->
|
60 |
|
61 |
+
### Model Sources
|
62 |
+
|
63 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
64 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
65 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
66 |
+
|
67 |
+
### Full Model Architecture
|
68 |
|
69 |
```
|
70 |
+
SentenceTransformer(
|
71 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
72 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
73 |
+
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
74 |
+
(3): Normalize()
|
75 |
+
)
|
76 |
```
|
77 |
|
78 |
+
## Usage
|
79 |
+
|
80 |
+
### Direct Usage (Sentence Transformers)
|
81 |
|
82 |
+
First install the Sentence Transformers library:
|
83 |
+
|
84 |
+
```bash
|
85 |
+
pip install -U sentence-transformers
|
86 |
+
```
|
87 |
+
|
88 |
+
Then you can load this model and run inference.
|
89 |
```python
|
90 |
from sentence_transformers import SentenceTransformer
|
|
|
91 |
|
92 |
+
# Download from the 🤗 Hub
|
93 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
94 |
+
# Run inference
|
95 |
+
sentences = [
|
96 |
+
'Прошин со пыӵалэн туж умой ыбылӥз, сӧсырмем бераз кошкыкуз со пыӵалзэ усто снайперлы — Жильцовлы сётыса кельтӥз.',
|
97 |
+
'Стрелял из нее Прошин отлично и, когда ушел в тыл после ранения, передал отличному снайперу - Жильцову.',
|
98 |
+
'– Чего стучишь? – сонным голосом спросила она.',
|
99 |
+
]
|
100 |
embeddings = model.encode(sentences)
|
101 |
+
print(embeddings.shape)
|
102 |
+
# [3, 768]
|
103 |
+
|
104 |
+
# Get the similarity scores for the embeddings
|
105 |
+
similarities = model.similarity(embeddings, embeddings)
|
106 |
+
print(similarities.shape)
|
107 |
+
# [3, 3]
|
108 |
```
|
109 |
|
110 |
+
<!--
|
111 |
+
### Direct Usage (Transformers)
|
112 |
|
113 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
114 |
|
115 |
+
</details>
|
116 |
+
-->
|
117 |
|
118 |
+
<!--
|
119 |
+
### Downstream Usage (Sentence Transformers)
|
120 |
|
121 |
+
You can finetune this model on your own dataset.
|
122 |
|
123 |
+
<details><summary>Click to expand</summary>
|
124 |
|
125 |
+
</details>
|
126 |
+
-->
|
127 |
|
128 |
+
<!--
|
129 |
+
### Out-of-Scope Use
|
130 |
|
131 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
132 |
+
-->
|
|
|
|
|
133 |
|
134 |
+
<!--
|
135 |
+
## Bias, Risks and Limitations
|
136 |
|
137 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
138 |
+
-->
|
139 |
+
|
140 |
+
<!--
|
141 |
+
### Recommendations
|
142 |
+
|
143 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
144 |
+
-->
|
145 |
+
|
146 |
+
## Training Details
|
147 |
+
|
148 |
+
### Training Dataset
|
149 |
+
|
150 |
+
#### Unnamed Dataset
|
151 |
+
|
152 |
+
* Size: 101,540 training samples
|
153 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
154 |
+
* Approximate statistics based on the first 1000 samples:
|
155 |
+
| | sentence_0 | sentence_1 | label |
|
156 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
157 |
+
| type | string | string | float |
|
158 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 31.78 tokens</li><li>max: 219 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 22.1 tokens</li><li>max: 147 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
|
159 |
+
* Samples:
|
160 |
+
| sentence_0 | sentence_1 | label |
|
161 |
+
|:--------------------------------------------------------|:-----------------------------------------------------------------|:-----------------|
|
162 |
+
| <code>Нырысь со чебер потэ но мылкыдэз шулдыртэ.</code> | <code>Сначала это кажется красивым и, возбуждая, веселит.</code> | <code>1.0</code> |
|
163 |
+
| <code>Тани султо но али ик кошко.</code> | <code>Вот возьму и сейчас уеду.</code> | <code>1.0</code> |
|
164 |
+
| <code>— Мынӥсько! — вазиз анай.</code> | <code>— Иду! — ответила мать.</code> | <code>1.0</code> |
|
165 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
166 |
+
```json
|
167 |
+
{
|
168 |
+
"scale": 20.0,
|
169 |
+
"similarity_fct": "cos_sim"
|
170 |
+
}
|
171 |
```
|
172 |
|
173 |
+
### Training Hyperparameters
|
174 |
+
#### Non-Default Hyperparameters
|
175 |
+
|
176 |
+
- `eval_strategy`: steps
|
177 |
+
- `per_device_train_batch_size`: 10
|
178 |
+
- `per_device_eval_batch_size`: 10
|
179 |
+
- `num_train_epochs`: 1
|
180 |
+
- `fp16`: True
|
181 |
+
- `multi_dataset_batch_sampler`: round_robin
|
182 |
+
|
183 |
+
#### All Hyperparameters
|
184 |
+
<details><summary>Click to expand</summary>
|
185 |
+
|
186 |
+
- `overwrite_output_dir`: False
|
187 |
+
- `do_predict`: False
|
188 |
+
- `eval_strategy`: steps
|
189 |
+
- `prediction_loss_only`: True
|
190 |
+
- `per_device_train_batch_size`: 10
|
191 |
+
- `per_device_eval_batch_size`: 10
|
192 |
+
- `per_gpu_train_batch_size`: None
|
193 |
+
- `per_gpu_eval_batch_size`: None
|
194 |
+
- `gradient_accumulation_steps`: 1
|
195 |
+
- `eval_accumulation_steps`: None
|
196 |
+
- `torch_empty_cache_steps`: None
|
197 |
+
- `learning_rate`: 5e-05
|
198 |
+
- `weight_decay`: 0.0
|
199 |
+
- `adam_beta1`: 0.9
|
200 |
+
- `adam_beta2`: 0.999
|
201 |
+
- `adam_epsilon`: 1e-08
|
202 |
+
- `max_grad_norm`: 1
|
203 |
+
- `num_train_epochs`: 1
|
204 |
+
- `max_steps`: -1
|
205 |
+
- `lr_scheduler_type`: linear
|
206 |
+
- `lr_scheduler_kwargs`: {}
|
207 |
+
- `warmup_ratio`: 0.0
|
208 |
+
- `warmup_steps`: 0
|
209 |
+
- `log_level`: passive
|
210 |
+
- `log_level_replica`: warning
|
211 |
+
- `log_on_each_node`: True
|
212 |
+
- `logging_nan_inf_filter`: True
|
213 |
+
- `save_safetensors`: True
|
214 |
+
- `save_on_each_node`: False
|
215 |
+
- `save_only_model`: False
|
216 |
+
- `restore_callback_states_from_checkpoint`: False
|
217 |
+
- `no_cuda`: False
|
218 |
+
- `use_cpu`: False
|
219 |
+
- `use_mps_device`: False
|
220 |
+
- `seed`: 42
|
221 |
+
- `data_seed`: None
|
222 |
+
- `jit_mode_eval`: False
|
223 |
+
- `use_ipex`: False
|
224 |
+
- `bf16`: False
|
225 |
+
- `fp16`: True
|
226 |
+
- `fp16_opt_level`: O1
|
227 |
+
- `half_precision_backend`: auto
|
228 |
+
- `bf16_full_eval`: False
|
229 |
+
- `fp16_full_eval`: False
|
230 |
+
- `tf32`: None
|
231 |
+
- `local_rank`: 0
|
232 |
+
- `ddp_backend`: None
|
233 |
+
- `tpu_num_cores`: None
|
234 |
+
- `tpu_metrics_debug`: False
|
235 |
+
- `debug`: []
|
236 |
+
- `dataloader_drop_last`: False
|
237 |
+
- `dataloader_num_workers`: 0
|
238 |
+
- `dataloader_prefetch_factor`: None
|
239 |
+
- `past_index`: -1
|
240 |
+
- `disable_tqdm`: False
|
241 |
+
- `remove_unused_columns`: True
|
242 |
+
- `label_names`: None
|
243 |
+
- `load_best_model_at_end`: False
|
244 |
+
- `ignore_data_skip`: False
|
245 |
+
- `fsdp`: []
|
246 |
+
- `fsdp_min_num_params`: 0
|
247 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
248 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
249 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
250 |
+
- `deepspeed`: None
|
251 |
+
- `label_smoothing_factor`: 0.0
|
252 |
+
- `optim`: adamw_torch
|
253 |
+
- `optim_args`: None
|
254 |
+
- `adafactor`: False
|
255 |
+
- `group_by_length`: False
|
256 |
+
- `length_column_name`: length
|
257 |
+
- `ddp_find_unused_parameters`: None
|
258 |
+
- `ddp_bucket_cap_mb`: None
|
259 |
+
- `ddp_broadcast_buffers`: False
|
260 |
+
- `dataloader_pin_memory`: True
|
261 |
+
- `dataloader_persistent_workers`: False
|
262 |
+
- `skip_memory_metrics`: True
|
263 |
+
- `use_legacy_prediction_loop`: False
|
264 |
+
- `push_to_hub`: False
|
265 |
+
- `resume_from_checkpoint`: None
|
266 |
+
- `hub_model_id`: None
|
267 |
+
- `hub_strategy`: every_save
|
268 |
+
- `hub_private_repo`: False
|
269 |
+
- `hub_always_push`: False
|
270 |
+
- `gradient_checkpointing`: False
|
271 |
+
- `gradient_checkpointing_kwargs`: None
|
272 |
+
- `include_inputs_for_metrics`: False
|
273 |
+
- `eval_do_concat_batches`: True
|
274 |
+
- `fp16_backend`: auto
|
275 |
+
- `push_to_hub_model_id`: None
|
276 |
+
- `push_to_hub_organization`: None
|
277 |
+
- `mp_parameters`:
|
278 |
+
- `auto_find_batch_size`: False
|
279 |
+
- `full_determinism`: False
|
280 |
+
- `torchdynamo`: None
|
281 |
+
- `ray_scope`: last
|
282 |
+
- `ddp_timeout`: 1800
|
283 |
+
- `torch_compile`: False
|
284 |
+
- `torch_compile_backend`: None
|
285 |
+
- `torch_compile_mode`: None
|
286 |
+
- `dispatch_batches`: None
|
287 |
+
- `split_batches`: None
|
288 |
+
- `include_tokens_per_second`: False
|
289 |
+
- `include_num_input_tokens_seen`: False
|
290 |
+
- `neftune_noise_alpha`: None
|
291 |
+
- `optim_target_modules`: None
|
292 |
+
- `batch_eval_metrics`: False
|
293 |
+
- `eval_on_start`: False
|
294 |
+
- `eval_use_gather_object`: False
|
295 |
+
- `prompts`: None
|
296 |
+
- `batch_sampler`: batch_sampler
|
297 |
+
- `multi_dataset_batch_sampler`: round_robin
|
298 |
+
|
299 |
+
</details>
|
300 |
+
|
301 |
+
### Training Logs
|
302 |
+
| Epoch | Step | Training Loss |
|
303 |
+
|:------:|:----:|:-------------:|
|
304 |
+
| 0.0787 | 100 | - |
|
305 |
+
| 0.1575 | 200 | - |
|
306 |
+
| 0.2362 | 300 | - |
|
307 |
+
| 0.3150 | 400 | - |
|
308 |
+
| 0.3937 | 500 | 0.3765 |
|
309 |
+
| 0.4724 | 600 | - |
|
310 |
+
| 0.5512 | 700 | - |
|
311 |
+
| 0.6299 | 800 | - |
|
312 |
+
|
313 |
+
|
314 |
+
### Framework Versions
|
315 |
+
- Python: 3.9.18
|
316 |
+
- Sentence Transformers: 3.4.0
|
317 |
+
- Transformers: 4.44.0
|
318 |
+
- PyTorch: 2.4.0+cu121
|
319 |
+
- Accelerate: 0.33.0
|
320 |
+
- Datasets: 3.2.0
|
321 |
+
- Tokenizers: 0.19.1
|
322 |
+
|
323 |
+
## Citation
|
324 |
+
|
325 |
+
### BibTeX
|
326 |
+
|
327 |
+
#### Sentence Transformers
|
328 |
+
```bibtex
|
329 |
+
@inproceedings{reimers-2019-sentence-bert,
|
330 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
331 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
332 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
333 |
+
month = "11",
|
334 |
+
year = "2019",
|
335 |
+
publisher = "Association for Computational Linguistics",
|
336 |
+
url = "https://arxiv.org/abs/1908.10084",
|
337 |
+
}
|
338 |
```
|
339 |
+
|
340 |
+
#### MultipleNegativesRankingLoss
|
341 |
+
```bibtex
|
342 |
+
@misc{henderson2017efficient,
|
343 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
344 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
345 |
+
year={2017},
|
346 |
+
eprint={1705.00652},
|
347 |
+
archivePrefix={arXiv},
|
348 |
+
primaryClass={cs.CL}
|
|
|
|
|
|
|
349 |
}
|
350 |
```
|
351 |
|
352 |
+
<!--
|
353 |
+
## Glossary
|
354 |
|
355 |
+
*Clearly define terms in order to be accessible across audiences.*
|
356 |
+
-->
|
357 |
+
|
358 |
+
<!--
|
359 |
+
## Model Card Authors
|
360 |
+
|
361 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
362 |
+
-->
|
|
|
363 |
|
364 |
+
<!--
|
365 |
+
## Model Card Contact
|
366 |
|
367 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
368 |
+
-->
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
@@ -25,7 +25,7 @@
|
|
25 |
"pooler_type": "first_token_transform",
|
26 |
"position_embedding_type": "absolute",
|
27 |
"torch_dtype": "float32",
|
28 |
-
"transformers_version": "4.
|
29 |
"type_vocab_size": 2,
|
30 |
"use_cache": true,
|
31 |
"vocab_size": 501153
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "sentence-transformers/LaBSE",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
25 |
"pooler_type": "first_token_transform",
|
26 |
"position_embedding_type": "absolute",
|
27 |
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.44.0",
|
29 |
"type_vocab_size": 2,
|
30 |
"use_cache": true,
|
31 |
"vocab_size": 501153
|
config_sentence_transformers.json
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "
|
6 |
-
}
|
|
|
|
|
|
|
7 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.0",
|
4 |
+
"transformers": "4.44.0",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1883730160
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a02134ed5c43d19f204ed7b24ec9b7d3b2d88c9d4ce4732907af51d61248154
|
3 |
size 1883730160
|
tokenizer_config.json
CHANGED
@@ -47,7 +47,7 @@
|
|
47 |
"do_lower_case": false,
|
48 |
"full_tokenizer_file": null,
|
49 |
"mask_token": "[MASK]",
|
50 |
-
"model_max_length":
|
51 |
"never_split": null,
|
52 |
"pad_token": "[PAD]",
|
53 |
"sep_token": "[SEP]",
|
|
|
47 |
"do_lower_case": false,
|
48 |
"full_tokenizer_file": null,
|
49 |
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 256,
|
51 |
"never_split": null,
|
52 |
"pad_token": "[PAD]",
|
53 |
"sep_token": "[SEP]",
|