File size: 2,127 Bytes
5db1b90
 
 
 
983650b
 
 
5db1b90
 
983650b
 
5db1b90
 
 
 
 
983650b
5db1b90
 
 
 
 
 
 
983650b
5db1b90
983650b
5db1b90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---

base_model: openai/whisper-small-v3
datasets:
- mozilla-foundation/common_voice_11_0
language:
- vi
library_name: transformers
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: Whisper small vi - Ox
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: vi
      split: test
      args: 'config: vi, split: test'
    metrics:
    - type: wer
      value: 14.738458164272398
      name: Wer
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper small vi - Ox

This model is a fine-tuned version of [openai/whisper-small-v3](https://huggingface.co/openai/whisper-small-v3) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2529
- Wer: 14.7385

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05

- train_batch_size: 16

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 500
- training_steps: 4000

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch  | Step | Validation Loss | Wer     |

|:-------------:|:------:|:----:|:---------------:|:-------:|

| 0.2196        | 1.3928 | 1000 | 0.3174          | 19.4758 |

| 0.0938        | 2.7855 | 2000 | 0.2513          | 16.0325 |

| 0.014         | 4.1783 | 3000 | 0.2467          | 14.4972 |

| 0.0109        | 5.5710 | 4000 | 0.2529          | 14.7385 |





### Framework versions



- Transformers 4.45.2

- Pytorch 2.4.1

- Datasets 3.0.2

- Tokenizers 0.20.1