--- language: - vi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: Whisper small vi - Ox results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: vi split: test args: vi metrics: - name: Wer type: wer value: 31.26665341022072 --- # Whisper small vi - Ox This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.0138 - Wer: 31.2667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.2276 | 0.08 | 1000 | 0.7506 | 29.8509 | | 0.1768 | 0.16 | 2000 | 0.8114 | 31.2189 | | 0.1828 | 0.24 | 3000 | 0.8569 | 31.2985 | | 0.1632 | 0.32 | 4000 | 0.8523 | 31.9268 | | 0.1566 | 0.4 | 5000 | 0.9062 | 31.9149 | | 0.1532 | 0.48 | 6000 | 0.8914 | 31.4496 | | 0.1593 | 0.56 | 7000 | 0.9342 | 31.9825 | | 0.1411 | 0.64 | 8000 | 0.9412 | 32.0302 | | 0.1531 | 0.72 | 9000 | 0.9456 | 31.6206 | | 0.1246 | 0.8 | 10000 | 0.9452 | 31.7240 | | 0.1336 | 0.88 | 11000 | 0.9622 | 31.1195 | | 0.1392 | 0.96 | 12000 | 0.9638 | 31.3939 | | 0.0725 | 1.04 | 13000 | 1.0032 | 31.5649 | | 0.0838 | 1.12 | 14000 | 1.0346 | 31.7916 | | 0.0766 | 1.2 | 15000 | 1.0138 | 31.2667 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.4.1 - Datasets 3.0.1 - Tokenizers 0.15.2