--- base_model: openai/whisper-small-v3 datasets: - mozilla-foundation/common_voice_11_0 language: - vi library_name: transformers metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper small vi - Ox results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: vi split: test args: 'config: vi, split: test' metrics: - type: wer value: 14.738458164272398 name: Wer --- # Whisper small vi - Ox This model is a fine-tuned version of [openai/whisper-small-v3](https://huggingface.co/openai/whisper-small-v3) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2529 - Wer: 14.7385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2196 | 1.3928 | 1000 | 0.3174 | 19.4758 | | 0.0938 | 2.7855 | 2000 | 0.2513 | 16.0325 | | 0.014 | 4.1783 | 3000 | 0.2467 | 14.4972 | | 0.0109 | 5.5710 | 4000 | 0.2529 | 14.7385 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1 - Datasets 3.0.2 - Tokenizers 0.20.1