File size: 3,222 Bytes
05c9f80 4b53004 05c9f80 4b53004 05c9f80 4b53004 05c9f80 4b53004 05c9f80 4b53004 05c9f80 4b53004 05c9f80 15bc341 05c9f80 4b53004 05c9f80 15bc341 05c9f80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora
widget:
- text: '<s0><s1> webpage about Star Wars'
output:
url:
"star wars.jpeg"
- text: '<s0><s1> webpage about the movie Mean Girls'
output:
url:
"image_1.png"
- text: '<s0><s1> webpage about Taylor Swift'
output:
url:
"taylor swift.jpeg"
- text: '<s0><s1> webpage about Ramen'
output:
url:
"ramen.jpeg"
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a webpage in the style of <s0><s1>
license: openrail++
---
# SDXL LoRA DreamBooth - LinoyTsaban/web_y2k
<Gallery />
## Model description
### These are LinoyTsaban/web_y2k LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` → use `<s0><s1>` in your prompt
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('LinoyTsaban/web_y2k', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='LinoyTsaban/web_y2k', filename="embeddings.safetensors", repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
image = pipeline('<s0><s1> webpage about the movie Mean Girls').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- Download the LoRA *.safetensors [here](/LinoyTsaban/web_y2k_v6/blob/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder.
- Download the text embeddings *.safetensors [here](/LinoyTsaban/web_y2k_v6/blob/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder.
All [Files & versions](/LinoyTsaban/web_y2k_v6/tree/main).
## Details
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|