Upload MyPipe.py
Browse files
MyPipe.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import torch, os
|
3 |
import torch.nn.functional as F
|
4 |
from torchvision.transforms.functional import normalize
|
@@ -7,70 +6,75 @@ from transformers import Pipeline
|
|
7 |
from skimage import io
|
8 |
from PIL import Image
|
9 |
|
|
|
10 |
class RMBGPipe(Pipeline):
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
if "model_input_size" in kwargs :
|
22 |
-
preprocess_kwargs["model_input_size"] = kwargs["model_input_size"]
|
23 |
-
if "out_name" in kwargs:
|
24 |
-
postprocess_kwargs["out_name"] = kwargs["out_name"]
|
25 |
-
return preprocess_kwargs, {}, postprocess_kwargs
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
no_bg_image.save(out_name)
|
55 |
-
else :
|
56 |
-
return result_image
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
image = torch.divide(im_tensor,255.0)
|
67 |
-
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
68 |
-
return image
|
69 |
-
def postprocess_image(self,result: torch.Tensor, im_size: list)-> np.ndarray:
|
70 |
-
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0)
|
71 |
-
ma = torch.max(result)
|
72 |
-
mi = torch.min(result)
|
73 |
-
result = (result-mi)/(ma-mi)
|
74 |
-
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)
|
75 |
-
im_array = np.squeeze(im_array)
|
76 |
-
return im_array
|
|
|
|
|
1 |
import torch, os
|
2 |
import torch.nn.functional as F
|
3 |
from torchvision.transforms.functional import normalize
|
|
|
6 |
from skimage import io
|
7 |
from PIL import Image
|
8 |
|
9 |
+
|
10 |
class RMBGPipe(Pipeline):
|
11 |
+
def __init__(self, **kwargs):
|
12 |
+
Pipeline.__init__(self, **kwargs)
|
13 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
self.model.to(self.device)
|
15 |
+
self.model.eval()
|
16 |
+
|
17 |
+
def _sanitize_parameters(self, **kwargs):
|
18 |
+
# parse parameters
|
19 |
+
preprocess_kwargs = {}
|
20 |
+
postprocess_kwargs = {}
|
21 |
+
if "model_input_size" in kwargs:
|
22 |
+
preprocess_kwargs["model_input_size"] = kwargs["model_input_size"]
|
23 |
+
if "out_name" in kwargs:
|
24 |
+
postprocess_kwargs["out_name"] = kwargs["out_name"]
|
25 |
+
return preprocess_kwargs, {}, postprocess_kwargs
|
26 |
+
|
27 |
+
def preprocess(self, orig_im: Image, model_input_size: list = [1024, 1024]):
|
28 |
+
# preprocess the input
|
29 |
+
orig_im_size = orig_im.shape[0:2]
|
30 |
+
image = self.preprocess_image(orig_im, model_input_size).to(self.device)
|
31 |
+
inputs = {
|
32 |
+
"orig_im": orig_im,
|
33 |
+
"image": image,
|
34 |
+
"orig_im_size": orig_im_size,
|
35 |
+
}
|
36 |
+
return inputs
|
37 |
|
38 |
+
def _forward(self, inputs):
|
39 |
+
result = self.model(inputs.pop("image"))
|
40 |
+
inputs["result"] = result
|
41 |
+
return inputs
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
def postprocess(self, inputs, out_name=""):
|
44 |
+
result = inputs.pop("result")
|
45 |
+
orig_im_size = inputs.pop("orig_im_size")
|
46 |
+
orig_image = inputs.pop("orig_image")
|
47 |
+
result_image = self.postprocess_image(result[0][0], orig_im_size)
|
48 |
+
if out_name != "":
|
49 |
+
# if out_name is specified we save the image using that name
|
50 |
+
pil_im = Image.fromarray(result_image)
|
51 |
+
no_bg_image = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
|
52 |
+
no_bg_image.paste(orig_image, mask=pil_im)
|
53 |
+
no_bg_image.save(out_name)
|
54 |
+
else:
|
55 |
+
return result_image
|
56 |
|
57 |
+
# utilities functions
|
58 |
+
def preprocess_image(
|
59 |
+
self, im: np.ndarray, model_input_size: list = [1024, 1024]
|
60 |
+
) -> torch.Tensor:
|
61 |
+
# same as utilities.py with minor modification
|
62 |
+
if len(im.shape) < 3:
|
63 |
+
im = im[:, :, np.newaxis]
|
64 |
+
# orig_im_size=im.shape[0:2]
|
65 |
+
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1)
|
66 |
+
im_tensor = F.interpolate(
|
67 |
+
torch.unsqueeze(im_tensor, 0), size=model_input_size, mode="bilinear"
|
68 |
+
).type(torch.uint8)
|
69 |
+
image = torch.divide(im_tensor, 255.0)
|
70 |
+
image = normalize(image, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
|
71 |
+
return image
|
|
|
|
|
|
|
72 |
|
73 |
+
def postprocess_image(self, result: torch.Tensor, im_size: list) -> np.ndarray:
|
74 |
+
result = torch.squeeze(F.interpolate(result, size=im_size, mode="bilinear"), 0)
|
75 |
+
ma = torch.max(result)
|
76 |
+
mi = torch.min(result)
|
77 |
+
result = (result - mi) / (ma - mi)
|
78 |
+
im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8)
|
79 |
+
im_array = np.squeeze(im_array)
|
80 |
+
return im_array
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|