File size: 26,681 Bytes
5ceacbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 |
import logging
import os
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from collections import OrderedDict
from einops import rearrange
from timm.models.layers import DropPath, trunc_normal_
# helper methods
from .registry import register_image_encoder
import mup.init
from mup import MuReadout, set_base_shapes
logger = logging.getLogger(__name__)
class MySequential(nn.Sequential):
def forward(self, *inputs):
for module in self._modules.values():
if type(inputs) == tuple:
inputs = module(*inputs)
else:
inputs = module(inputs)
return inputs
class PreNorm(nn.Module):
def __init__(self, norm, fn, drop_path=None):
super().__init__()
self.norm = norm
self.fn = fn
self.drop_path = drop_path
def forward(self, x, *args, **kwargs):
shortcut = x
if self.norm != None:
x, size = self.fn(self.norm(x), *args, **kwargs)
else:
x, size = self.fn(x, *args, **kwargs)
if self.drop_path:
x = self.drop_path(x)
x = shortcut + x
return x, size
class Mlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.net = nn.Sequential(OrderedDict([
("fc1", nn.Linear(in_features, hidden_features)),
("act", act_layer()),
("fc2", nn.Linear(hidden_features, out_features))
]))
def forward(self, x, size):
return self.net(x), size
class DepthWiseConv2d(nn.Module):
def __init__(
self,
dim_in,
kernel_size,
padding,
stride,
bias=True,
):
super().__init__()
self.dw = nn.Conv2d(
dim_in, dim_in,
kernel_size=kernel_size,
padding=padding,
groups=dim_in,
stride=stride,
bias=bias
)
def forward(self, x, size):
B, N, C = x.shape
H, W = size
assert N == H * W
x = self.dw(x.transpose(1, 2).view(B, C, H, W))
size = (x.size(-2), x.size(-1))
x = x.flatten(2).transpose(1, 2)
return x, size
class ConvEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(
self,
patch_size=7,
in_chans=3,
embed_dim=64,
stride=4,
padding=2,
norm_layer=None,
pre_norm=True
):
super().__init__()
self.patch_size = patch_size
self.proj = nn.Conv2d(
in_chans, embed_dim,
kernel_size=patch_size,
stride=stride,
padding=padding
)
dim_norm = in_chans if pre_norm else embed_dim
self.norm = norm_layer(dim_norm) if norm_layer else None
self.pre_norm = pre_norm
def forward(self, x, size):
H, W = size
if len(x.size()) == 3:
if self.norm and self.pre_norm:
x = self.norm(x)
x = rearrange(
x, 'b (h w) c -> b c h w',
h=H, w=W
)
x = self.proj(x)
_, _, H, W = x.shape
x = rearrange(x, 'b c h w -> b (h w) c')
if self.norm and not self.pre_norm:
x = self.norm(x)
return x, (H, W)
class ChannelAttention(nn.Module):
def __init__(self, dim, base_dim, groups=8, base_groups=8, qkv_bias=True, dynamic_scale=True, standparam=True):
super().__init__()
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.dynamic_scale = dynamic_scale
self.dim = dim
self.groups = groups
self.group_dim = dim // groups
self.base_dim = base_dim
self.base_groups = base_groups
self.base_group_dim = base_dim // base_groups
self.group_wm = self.group_dim / self.base_group_dim # Width multiplier for each group.
self.standparam = standparam
def forward(self, x, size):
B, N, C = x.shape
assert C == self.dim
qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # Shape: [B, groups, N, group_dim].
scale = N ** -0.5 if self.dynamic_scale else self.dim ** -0.5
# Change the scaling factor.
# Ref: examples/Transformer/model.py in muP.
# Note: We consider backward compatiblity and follow https://github.com/microsoft/mup/issues/18.
if self.standparam:
scale = N ** -0.5 if self.dynamic_scale else self.dim ** -0.5
else:
assert self.dynamic_scale # Currently only support dynamic scale.
scale = N ** -0.5
q = q * scale
attention = q.transpose(-1, -2) @ k
attention = attention.softmax(dim=-1)
if not self.standparam:
# Follow https://github.com/microsoft/mup/issues/18.
attention = attention / self.group_wm
x = (attention @ v.transpose(-1, -2)).transpose(-1, -2)
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
return x, size
class ChannelBlock(nn.Module):
def __init__(self, dim, base_dim, groups, base_groups, mlp_ratio=4., qkv_bias=True,
drop_path_rate=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
conv_at_attn=True, conv_at_ffn=True, dynamic_scale=True, standparam=True):
super().__init__()
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
self.channel_attn = PreNorm(
norm_layer(dim),
ChannelAttention(dim, base_dim, groups=groups, base_groups=base_groups, qkv_bias=qkv_bias,
dynamic_scale=dynamic_scale, standparam=standparam),
drop_path
)
self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
self.ffn = PreNorm(
norm_layer(dim),
Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer),
drop_path
)
def forward(self, x, size):
if self.conv1:
x, size = self.conv1(x, size)
x, size = self.channel_attn(x, size)
if self.conv2:
x, size = self.conv2(x, size)
x, size = self.ffn(x, size)
return x, size
def window_partition(x, window_size: int):
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size: int, H: int, W: int):
B = windows.shape[0] // (H * W // window_size // window_size)
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class WindowAttention(nn.Module):
def __init__(self, dim, base_dim, num_heads, base_num_heads, window_size, qkv_bias=True, standparam=True):
super().__init__()
self.window_size = window_size
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.base_dim = base_dim
self.base_num_heads = base_num_heads
base_head_dim = base_dim // base_num_heads
# Change the scaling factor.
# Ref: examples/Transformer/model.py in muP.
# Note: We consider backward compatiblity and follow https://github.com/microsoft/mup/issues/17.
if standparam:
scale = float(head_dim) ** -0.5
else:
# TODO: Here we ensure backward compatibility, which may not be optimal.
# We may add an argument called backward_comp. If it is set as False, we use
# float(head_dim) ** -1 * math.sqrt(attn_mult)
# as in the Transformer example in muP.
base_scale = float(base_head_dim) ** -0.5 # The same as scaling in standard parametrization.
head_wm = head_dim / base_head_dim # Width multiplier for each head.
scale = base_scale / head_wm
# scale_1 = (float(base_head_dim) ** 0.5) * (float(head_dim) ** -1) # Equivalent implementation as shown in the muP paper.
# assert np.isclose(scale, scale_1)
self.scale = scale
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, size):
H, W = size
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
x = x.view(B, H, W, C)
pad_l = pad_t = 0
pad_r = (self.window_size - W % self.window_size) % self.window_size
pad_b = (self.window_size - H % self.window_size) % self.window_size
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
x = window_partition(x, self.window_size)
x = x.view(-1, self.window_size * self.window_size, C)
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
attn = self.softmax(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
# merge windows
x = x.view(
-1, self.window_size, self.window_size, C
)
x = window_reverse(x, self.window_size, Hp, Wp)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, C)
return x, size
class SpatialBlock(nn.Module):
def __init__(self, dim, base_dim, num_heads, base_num_heads, window_size,
mlp_ratio=4., qkv_bias=True, drop_path_rate=0., act_layer=nn.GELU,
norm_layer=nn.LayerNorm, conv_at_attn=True, conv_at_ffn=True, standparam=True):
super().__init__()
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
self.window_attn = PreNorm(
norm_layer(dim),
WindowAttention(dim, base_dim, num_heads, base_num_heads, window_size, qkv_bias=qkv_bias,
standparam=standparam),
drop_path
)
self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
self.ffn = PreNorm(
norm_layer(dim),
Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer),
drop_path
)
def forward(self, x, size):
if self.conv1:
x, size = self.conv1(x, size)
x, size = self.window_attn(x, size)
if self.conv2:
x, size = self.conv2(x, size)
x, size = self.ffn(x, size)
return x, size
class DaViT(nn.Module):
""" DaViT: Dual-Attention Transformer
Args:
img_size (int | tuple(int)): Input image size. Default: 224
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of spatial and channel blocks in different stages. Default: (1, 1, 3, 1)
patch_size (tuple(int)): Patch sizes in different stages. Default: (7, 2, 2, 2)
patch_stride (tuple(int)): Patch strides in different stages. Default: (4, 2, 2, 2)
patch_padding (tuple(int)): Patch padding sizes in different stages. Default: (3, 0, 0, 0)
patch_prenorm (tuple(bool)): Use pre-normalization or not in different stages. Default: (False, False, False, False)
embed_dims (tuple(int)): Patch embedding dimension. Default: (64, 128, 192, 256)
base_embed_dims (tuple(int)): Patch embedding dimension (base case for muP). Default: (64, 128, 192, 256)
num_heads (tuple(int)): Number of attention heads in different layers. Default: (4, 8, 12, 16)
base_num_heads (tuple(int)): Number of attention heads in different layers (base case for muP). Default: (4, 8, 12, 16)
num_groups (tuple(int)): Number of groups in channel attention in different layers. Default: (3, 6, 12, 24)
base_num_groups (tuple(int)): Number of groups in channel attention in different layers (base case for muP). Default: (3, 6, 12, 24)
window_size (int): Window size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
enable_checkpoint (bool): If True, enabling checkpoint. Default: False
conv_at_attn (bool): If True, add convolution layer before attention. Default: True
conv_at_ffn (bool): If True, add convolution layer before ffn. Default: True
dynamic_scale (bool): If True, scale of channel attention is respect to the number of tokens. Default: True
standparam (bool): Use standard parametrization or mu-parametrization. Default: True (i.e., use standard paramerization)
"""
def __init__(
self,
img_size=224,
in_chans=3,
num_classes=1000,
depths=(1, 1, 3, 1),
patch_size=(7, 2, 2, 2),
patch_stride=(4, 2, 2, 2),
patch_padding=(3, 0, 0, 0),
patch_prenorm=(False, False, False, False),
embed_dims=(64, 128, 192, 256),
base_embed_dims=(64, 128, 192, 256),
num_heads=(3, 6, 12, 24),
base_num_heads=(3, 6, 12, 24),
num_groups=(3, 6, 12, 24),
base_num_groups=(3, 6, 12, 24),
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
enable_checkpoint=False,
conv_at_attn=True,
conv_at_ffn=True,
dynamic_scale=True,
standparam=True
):
super().__init__()
self.num_classes = num_classes
self.embed_dims = embed_dims
self.num_heads = num_heads
self.num_groups = num_groups
self.num_stages = len(self.embed_dims)
self.enable_checkpoint = enable_checkpoint
assert self.num_stages == len(self.num_heads) == len(self.num_groups)
num_stages = len(embed_dims)
self.img_size = img_size
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths) * 2)]
depth_offset = 0
convs = []
blocks = []
for i in range(num_stages):
conv_embed = ConvEmbed(
patch_size=patch_size[i],
stride=patch_stride[i],
padding=patch_padding[i],
in_chans=in_chans if i == 0 else self.embed_dims[i - 1],
embed_dim=self.embed_dims[i],
norm_layer=norm_layer,
pre_norm=patch_prenorm[i]
)
convs.append(conv_embed)
logger.info(f'=> Depth offset in stage {i}: {depth_offset}')
block = MySequential(
*[
MySequential(OrderedDict([
(
'spatial_block', SpatialBlock(
embed_dims[i],
base_embed_dims[i],
num_heads[i],
base_num_heads[i],
window_size,
drop_path_rate=dpr[depth_offset + j * 2],
qkv_bias=qkv_bias,
mlp_ratio=mlp_ratio,
conv_at_attn=conv_at_attn,
conv_at_ffn=conv_at_ffn,
standparam=standparam
)
),
(
'channel_block', ChannelBlock(
embed_dims[i],
base_embed_dims[i],
num_groups[i],
base_num_groups[i],
drop_path_rate=dpr[depth_offset + j * 2 + 1],
qkv_bias=qkv_bias,
mlp_ratio=mlp_ratio,
conv_at_attn=conv_at_attn,
conv_at_ffn=conv_at_ffn,
dynamic_scale=dynamic_scale,
standparam=standparam
)
)
])) for j in range(depths[i])
]
)
blocks.append(block)
depth_offset += depths[i] * 2
self.convs = nn.ModuleList(convs)
self.blocks = nn.ModuleList(blocks)
self.norms = norm_layer(self.embed_dims[-1])
self.avgpool = nn.AdaptiveAvgPool1d(1)
if standparam:
self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
else:
self.head = MuReadout(self.embed_dims[-1], num_classes,
readout_zero_init=True) # Follow examples/ResNet/resnet.py in muP.
if torch.cuda.is_available():
self.device = torch.device(type="cuda", index=0)
else:
self.device = torch.device(type="cpu")
def custom_init_weights(self, use_original_init=True):
self.use_original_init = use_original_init
logger.info('Custom init: {}'.format('original init' if self.use_original_init else 'muP init'))
self.apply(self._custom_init_weights)
@property
def dim_out(self):
return self.embed_dims[-1]
def _custom_init_weights(self, m):
# Customized initialization for weights.
if self.use_original_init:
# Original initialization.
# Note: This is not SP init. We do not implement SP init here.
custom_trunc_normal_ = trunc_normal_
custom_normal_ = nn.init.normal_
else:
# muP.
custom_trunc_normal_ = mup.init.trunc_normal_
custom_normal_ = mup.init.normal_
# These initializations will overwrite the existing inializations from the modules and adjusted by set_base_shapes().
if isinstance(m, MuReadout):
pass # Note: MuReadout is already zero initialized due to readout_zero_init=True.
elif isinstance(m, nn.Linear):
custom_trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Conv2d):
custom_normal_(m.weight, std=0.02)
for name, _ in m.named_parameters():
if name in ['bias']:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm): # Follow P24 Layernorm Weights and Biases.
nn.init.constant_(m.weight, 1.0)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d): # Follow P24 Layernorm Weights and Biases.
nn.init.constant_(m.weight, 1.0)
nn.init.constant_(m.bias, 0)
def _try_remap_keys(self, pretrained_dict):
remap_keys = {
"conv_embeds": "convs",
"main_blocks": "blocks",
"0.cpe.0.proj": "spatial_block.conv1.fn.dw",
"0.attn": "spatial_block.window_attn.fn",
"0.cpe.1.proj": "spatial_block.conv2.fn.dw",
"0.mlp": "spatial_block.ffn.fn.net",
"1.cpe.0.proj": "channel_block.conv1.fn.dw",
"1.attn": "channel_block.channel_attn.fn",
"1.cpe.1.proj": "channel_block.conv2.fn.dw",
"1.mlp": "channel_block.ffn.fn.net",
"0.norm1": "spatial_block.window_attn.norm",
"0.norm2": "spatial_block.ffn.norm",
"1.norm1": "channel_block.channel_attn.norm",
"1.norm2": "channel_block.ffn.norm"
}
full_key_mappings = {}
for k in pretrained_dict.keys():
old_k = k
for remap_key in remap_keys.keys():
if remap_key in k:
logger.info(f'=> Repace {remap_key} with {remap_keys[remap_key]}')
k = k.replace(remap_key, remap_keys[remap_key])
full_key_mappings[old_k] = k
return full_key_mappings
def from_state_dict(self, pretrained_dict, pretrained_layers=[], verbose=True):
model_dict = self.state_dict()
stripped_key = lambda x: x[14:] if x.startswith('image_encoder.') else x
full_key_mappings = self._try_remap_keys(pretrained_dict)
pretrained_dict = {
stripped_key(full_key_mappings[k]): v.to(self.device) for k, v in pretrained_dict.items()
if stripped_key(full_key_mappings[k]) in model_dict.keys()
}
need_init_state_dict = {}
for k, v in pretrained_dict.items():
need_init = (
k.split('.')[0] in pretrained_layers
or pretrained_layers[0] == '*'
)
if need_init:
if verbose:
logger.info(f'=> init {k} from pretrained state dict')
need_init_state_dict[k] = v.to(self.device)
self.load_state_dict(need_init_state_dict, strict=False)
def from_pretrained(self, pretrained='', pretrained_layers=[], verbose=True):
if os.path.isfile(pretrained):
logger.info(f'=> loading pretrained model {pretrained}')
pretrained_dict = torch.load(pretrained, map_location='cpu')
self.from_state_dict(pretrained_dict, pretrained_layers, verbose)
def forward_features(self, x):
input_size = (x.size(2), x.size(3))
for conv, block in zip(self.convs, self.blocks):
x, input_size = conv(x, input_size)
if self.enable_checkpoint:
x, input_size = checkpoint.checkpoint(block, x, input_size)
else:
x, input_size = block(x, input_size)
x = self.avgpool(x.transpose(1, 2))
x = torch.flatten(x, 1)
x = self.norms(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def create_encoder(config_encoder):
spec = config_encoder['SPEC']
standparam = spec.get('STANDPARAM', True)
if standparam:
# Dummy values for muP parameters.
base_embed_dims = spec['DIM_EMBED']
base_num_heads = spec['NUM_HEADS']
base_num_groups = spec['NUM_GROUPS']
else:
base_embed_dims = spec['BASE_DIM_EMBED']
base_num_heads = spec['BASE_NUM_HEADS']
base_num_groups = spec['BASE_NUM_GROUPS']
davit = DaViT(
num_classes=config_encoder['NUM_CLASSES'],
depths=spec['DEPTHS'],
embed_dims=spec['DIM_EMBED'],
base_embed_dims=base_embed_dims,
num_heads=spec['NUM_HEADS'],
base_num_heads=base_num_heads,
num_groups=spec['NUM_GROUPS'],
base_num_groups=base_num_groups,
patch_size=spec['PATCH_SIZE'],
patch_stride=spec['PATCH_STRIDE'],
patch_padding=spec['PATCH_PADDING'],
patch_prenorm=spec['PATCH_PRENORM'],
drop_path_rate=spec['DROP_PATH_RATE'],
img_size=config_encoder['IMAGE_SIZE'],
window_size=spec.get('WINDOW_SIZE', 7),
enable_checkpoint=spec.get('ENABLE_CHECKPOINT', False),
conv_at_attn=spec.get('CONV_AT_ATTN', True),
conv_at_ffn=spec.get('CONV_AT_FFN', True),
dynamic_scale=spec.get('DYNAMIC_SCALE', True),
standparam=standparam,
)
return davit
def create_mup_encoder(config_encoder):
def gen_config(config, wm):
new_config = copy.deepcopy(config)
for name in ['DIM_EMBED', 'NUM_HEADS', 'NUM_GROUPS']:
base_name = 'BASE_' + name
new_values = [round(base_value * wm) for base_value in
config['SPEC'][base_name]] # New value = base value * width multiplier.
logger.info(f'config["SPEC"]["{name}"]: {new_config["SPEC"][name]} -> {new_values}')
new_config['SPEC'][name] = new_values
return new_config
logger.info('muP: Create models and set base shapes')
logger.info('=> Create model')
model = create_encoder(config_encoder)
logger.info('=> Create base model')
base_config = gen_config(config_encoder, wm=1.0)
base_model = create_encoder(base_config)
logger.info('=> Create delta model')
delta_config = gen_config(config_encoder, wm=2.0)
delta_model = create_encoder(delta_config)
logger.info('=> Set base shapes in model for training')
set_base_shapes(model, base=base_model, delta=delta_model)
return model
@register_image_encoder
def image_encoder(config_encoder, verbose, **kwargs):
spec = config_encoder['SPEC']
standparam = spec.get('STANDPARAM', True)
if standparam:
logger.info('Create model with standard parameterization')
model = create_encoder(config_encoder)
model.custom_init_weights(use_original_init=True)
else:
logger.info('Create model with mu parameterization')
model = create_mup_encoder(config_encoder)
model.custom_init_weights(use_original_init=False)
logger.info('Load model from pretrained checkpoint')
if config_encoder['LOAD_PRETRAINED']:
model.from_pretrained(
config_encoder['PRETRAINED'],
config_encoder['PRETRAINED_LAYERS'],
verbose
)
return model |