--- base_model: openai/whisper-large-v3 datasets: - google/fleurs language: - pt license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Large V3 pt Fleurs - Chee Li results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: google/fleurs config: pt_br split: None args: 'config: pt split: test' metrics: - type: wer value: 257.5243288985003 name: Wer --- # Whisper Large V3 pt Fleurs - Chee Li This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.1532 - Wer: 257.5243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0151 | 2.5126 | 500 | 0.1223 | 181.9849 | | 0.0011 | 5.0251 | 1000 | 0.1471 | 239.4293 | | 0.0005 | 7.5377 | 1500 | 0.1532 | 257.5243 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1