|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
''' |
|
A human body pose prior built with Auto-Encoding Variational Bayes |
|
''' |
|
|
|
__all__ = ['VPoser'] |
|
|
|
import os, sys, shutil |
|
|
|
import torch |
|
|
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
import numpy as np |
|
|
|
import torchgeometry as tgm |
|
|
|
class ContinousRotReprDecoder(nn.Module): |
|
def __init__(self): |
|
super(ContinousRotReprDecoder, self).__init__() |
|
|
|
def forward(self, module_input): |
|
reshaped_input = module_input.view(-1, 3, 2) |
|
|
|
b1 = F.normalize(reshaped_input[:, :, 0], dim=1) |
|
|
|
dot_prod = torch.sum(b1 * reshaped_input[:, :, 1], dim=1, keepdim=True) |
|
b2 = F.normalize(reshaped_input[:, :, 1] - dot_prod * b1, dim=-1) |
|
b3 = torch.cross(b1, b2, dim=1) |
|
|
|
return torch.stack([b1, b2, b3], dim=-1) |
|
|
|
|
|
class VPoser(nn.Module): |
|
def __init__(self, num_neurons, latentD, data_shape, use_cont_repr=True): |
|
super(VPoser, self).__init__() |
|
|
|
self.latentD = latentD |
|
self.use_cont_repr = use_cont_repr |
|
|
|
n_features = np.prod(data_shape) |
|
self.num_joints = data_shape[1] |
|
|
|
self.bodyprior_enc_bn1 = nn.BatchNorm1d(n_features) |
|
self.bodyprior_enc_fc1 = nn.Linear(n_features, num_neurons) |
|
self.bodyprior_enc_bn2 = nn.BatchNorm1d(num_neurons) |
|
self.bodyprior_enc_fc2 = nn.Linear(num_neurons, num_neurons) |
|
self.bodyprior_enc_mu = nn.Linear(num_neurons, latentD) |
|
self.bodyprior_enc_logvar = nn.Linear(num_neurons, latentD) |
|
self.dropout = nn.Dropout(p=.1, inplace=False) |
|
|
|
self.bodyprior_dec_fc1 = nn.Linear(latentD, num_neurons) |
|
self.bodyprior_dec_fc2 = nn.Linear(num_neurons, num_neurons) |
|
|
|
if self.use_cont_repr: |
|
self.rot_decoder = ContinousRotReprDecoder() |
|
|
|
self.bodyprior_dec_out = nn.Linear(num_neurons, self.num_joints* 6) |
|
|
|
def encode(self, Pin): |
|
''' |
|
|
|
:param Pin: Nx(numjoints*3) |
|
:param rep_type: 'matrot'/'aa' for matrix rotations or axis-angle |
|
:return: |
|
''' |
|
Xout = Pin.view(Pin.size(0), -1) |
|
Xout = self.bodyprior_enc_bn1(Xout) |
|
|
|
Xout = F.leaky_relu(self.bodyprior_enc_fc1(Xout), negative_slope=.2) |
|
Xout = self.bodyprior_enc_bn2(Xout) |
|
Xout = self.dropout(Xout) |
|
Xout = F.leaky_relu(self.bodyprior_enc_fc2(Xout), negative_slope=.2) |
|
return torch.distributions.normal.Normal(self.bodyprior_enc_mu(Xout), F.softplus(self.bodyprior_enc_logvar(Xout))) |
|
|
|
def decode(self, Zin, output_type='matrot'): |
|
assert output_type in ['matrot', 'aa'] |
|
|
|
Xout = F.leaky_relu(self.bodyprior_dec_fc1(Zin), negative_slope=.2) |
|
Xout = self.dropout(Xout) |
|
Xout = F.leaky_relu(self.bodyprior_dec_fc2(Xout), negative_slope=.2) |
|
Xout = self.bodyprior_dec_out(Xout) |
|
if self.use_cont_repr: |
|
Xout = self.rot_decoder(Xout) |
|
else: |
|
Xout = torch.tanh(Xout) |
|
|
|
Xout = Xout.view([-1, 1, self.num_joints, 9]) |
|
if output_type == 'aa': return VPoser.matrot2aa(Xout) |
|
return Xout |
|
|
|
def forward(self, Pin, input_type='matrot', output_type='matrot'): |
|
''' |
|
|
|
:param Pin: aa: Nx1xnum_jointsx3 / matrot: Nx1xnum_jointsx9 |
|
:param input_type: matrot / aa for matrix rotations or axis angles |
|
:param output_type: matrot / aa |
|
:return: |
|
''' |
|
assert output_type in ['matrot', 'aa'] |
|
|
|
q_z = self.encode(Pin) |
|
q_z_sample = q_z.rsample() |
|
Prec = self.decode(q_z_sample) |
|
if output_type == 'aa': Prec = VPoser.matrot2aa(Prec) |
|
|
|
|
|
return {'pose':Prec, 'mean':q_z.mean, 'std':q_z.scale} |
|
|
|
def sample_poses(self, num_poses, output_type='aa', seed=None): |
|
np.random.seed(seed) |
|
dtype = self.bodyprior_dec_fc1.weight.dtype |
|
device = self.bodyprior_dec_fc1.weight.device |
|
self.eval() |
|
with torch.no_grad(): |
|
Zgen = torch.tensor(np.random.normal(0., 1., size=(num_poses, self.latentD)), dtype=dtype).to(device) |
|
return self.decode(Zgen, output_type=output_type) |
|
|
|
@staticmethod |
|
def matrot2aa(pose_matrot): |
|
''' |
|
:param pose_matrot: Nx1xnum_jointsx9 |
|
:return: Nx1xnum_jointsx3 |
|
''' |
|
batch_size = pose_matrot.size(0) |
|
homogen_matrot = F.pad(pose_matrot.view(-1, 3, 3), [0,1]) |
|
pose = tgm.rotation_matrix_to_angle_axis(homogen_matrot).view(batch_size, 1, -1, 3).contiguous() |
|
return pose |
|
|
|
@staticmethod |
|
def aa2matrot(pose): |
|
''' |
|
:param Nx1xnum_jointsx3 |
|
:return: pose_matrot: Nx1xnum_jointsx9 |
|
''' |
|
batch_size = pose.size(0) |
|
pose_body_matrot = tgm.angle_axis_to_rotation_matrix(pose.reshape(-1, 3))[:, :3, :3].contiguous().view(batch_size, 1, -1, 9) |
|
return pose_body_matrot |
|
|
|
|