models_hub_2 / vposer_v1_0 /vposer_smpl.py
lithiumice's picture
Upload folder using huggingface_hub
648e22c
# -*- coding: utf-8 -*-
#
# Copyright (C) 2019 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG),
# acting on behalf of its Max Planck Institute for Intelligent Systems and the
# Max Planck Institute for Biological Cybernetics. All rights reserved.
#
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights
# on this computer program. You can only use this computer program if you have closed a license agreement
# with MPG or you get the right to use the computer program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and liable to prosecution.
# Contact: ps-license@tuebingen.mpg.de
#
#
# If you use this code in a research publication please consider citing the following:
#
# Expressive Body Capture: 3D Hands, Face, and Body from a Single Image <https://arxiv.org/abs/1904.05866>
# AMASS: Archive of Motion Capture as Surface Shapes <https://arxiv.org/abs/1904.03278>
#
#
# Code Developed by:
# Nima Ghorbani <https://www.linkedin.com/in/nghorbani/>
# Vassilis Choutas <https://ps.is.tuebingen.mpg.de/employees/vchoutas> for ContinousRotReprDecoder
#
# 2018.01.02
'''
A human body pose prior built with Auto-Encoding Variational Bayes
'''
__all__ = ['VPoser']
import os, sys, shutil
import torch
from torch import nn
from torch.nn import functional as F
import numpy as np
import torchgeometry as tgm
class ContinousRotReprDecoder(nn.Module):
def __init__(self):
super(ContinousRotReprDecoder, self).__init__()
def forward(self, module_input):
reshaped_input = module_input.view(-1, 3, 2)
b1 = F.normalize(reshaped_input[:, :, 0], dim=1)
dot_prod = torch.sum(b1 * reshaped_input[:, :, 1], dim=1, keepdim=True)
b2 = F.normalize(reshaped_input[:, :, 1] - dot_prod * b1, dim=-1)
b3 = torch.cross(b1, b2, dim=1)
return torch.stack([b1, b2, b3], dim=-1)
class VPoser(nn.Module):
def __init__(self, num_neurons, latentD, data_shape, use_cont_repr=True):
super(VPoser, self).__init__()
self.latentD = latentD
self.use_cont_repr = use_cont_repr
n_features = np.prod(data_shape)
self.num_joints = data_shape[1]
self.bodyprior_enc_bn1 = nn.BatchNorm1d(n_features)
self.bodyprior_enc_fc1 = nn.Linear(n_features, num_neurons)
self.bodyprior_enc_bn2 = nn.BatchNorm1d(num_neurons)
self.bodyprior_enc_fc2 = nn.Linear(num_neurons, num_neurons)
self.bodyprior_enc_mu = nn.Linear(num_neurons, latentD)
self.bodyprior_enc_logvar = nn.Linear(num_neurons, latentD)
self.dropout = nn.Dropout(p=.1, inplace=False)
self.bodyprior_dec_fc1 = nn.Linear(latentD, num_neurons)
self.bodyprior_dec_fc2 = nn.Linear(num_neurons, num_neurons)
if self.use_cont_repr:
self.rot_decoder = ContinousRotReprDecoder()
self.bodyprior_dec_out = nn.Linear(num_neurons, self.num_joints* 6)
def encode(self, Pin):
'''
:param Pin: Nx(numjoints*3)
:param rep_type: 'matrot'/'aa' for matrix rotations or axis-angle
:return:
'''
Xout = Pin.view(Pin.size(0), -1) # flatten input
Xout = self.bodyprior_enc_bn1(Xout)
Xout = F.leaky_relu(self.bodyprior_enc_fc1(Xout), negative_slope=.2)
Xout = self.bodyprior_enc_bn2(Xout)
Xout = self.dropout(Xout)
Xout = F.leaky_relu(self.bodyprior_enc_fc2(Xout), negative_slope=.2)
return torch.distributions.normal.Normal(self.bodyprior_enc_mu(Xout), F.softplus(self.bodyprior_enc_logvar(Xout)))
def decode(self, Zin, output_type='matrot'):
assert output_type in ['matrot', 'aa']
Xout = F.leaky_relu(self.bodyprior_dec_fc1(Zin), negative_slope=.2)
Xout = self.dropout(Xout)
Xout = F.leaky_relu(self.bodyprior_dec_fc2(Xout), negative_slope=.2)
Xout = self.bodyprior_dec_out(Xout)
if self.use_cont_repr:
Xout = self.rot_decoder(Xout)
else:
Xout = torch.tanh(Xout)
Xout = Xout.view([-1, 1, self.num_joints, 9])
if output_type == 'aa': return VPoser.matrot2aa(Xout)
return Xout
def forward(self, Pin, input_type='matrot', output_type='matrot'):
'''
:param Pin: aa: Nx1xnum_jointsx3 / matrot: Nx1xnum_jointsx9
:param input_type: matrot / aa for matrix rotations or axis angles
:param output_type: matrot / aa
:return:
'''
assert output_type in ['matrot', 'aa']
# if input_type == 'aa': Pin = VPoser.aa2matrot(Pin)
q_z = self.encode(Pin)
q_z_sample = q_z.rsample()
Prec = self.decode(q_z_sample)
if output_type == 'aa': Prec = VPoser.matrot2aa(Prec)
#return Prec, q_z.mean, q_z.sigma
return {'pose':Prec, 'mean':q_z.mean, 'std':q_z.scale}
def sample_poses(self, num_poses, output_type='aa', seed=None):
np.random.seed(seed)
dtype = self.bodyprior_dec_fc1.weight.dtype
device = self.bodyprior_dec_fc1.weight.device
self.eval()
with torch.no_grad():
Zgen = torch.tensor(np.random.normal(0., 1., size=(num_poses, self.latentD)), dtype=dtype).to(device)
return self.decode(Zgen, output_type=output_type)
@staticmethod
def matrot2aa(pose_matrot):
'''
:param pose_matrot: Nx1xnum_jointsx9
:return: Nx1xnum_jointsx3
'''
batch_size = pose_matrot.size(0)
homogen_matrot = F.pad(pose_matrot.view(-1, 3, 3), [0,1])
pose = tgm.rotation_matrix_to_angle_axis(homogen_matrot).view(batch_size, 1, -1, 3).contiguous()
return pose
@staticmethod
def aa2matrot(pose):
'''
:param Nx1xnum_jointsx3
:return: pose_matrot: Nx1xnum_jointsx9
'''
batch_size = pose.size(0)
pose_body_matrot = tgm.angle_axis_to_rotation_matrix(pose.reshape(-1, 3))[:, :3, :3].contiguous().view(batch_size, 1, -1, 9)
return pose_body_matrot