# Model Configuration model_name: /large-storage/model/deberta-v3-large # Hugging Face model labels_encoder: null name: "span level gliner" max_width: 12 hidden_size: 512 dropout: 0.4 fine_tune: true subtoken_pooling: first span_mode: markerV0 # Training Parameters num_steps: 10000 train_batch_size: 8 eval_every: 1000 warmup_ratio: 0.1 scheduler_type: "cosine" # loss function loss_alpha: -1 # focal loss alpha, if -1, no focal loss loss_gamma: 0 # focal loss gamma, if 0, no focal loss label_smoothing: 0 loss_reduction: "sum" # Learning Rate and weight decay Configuration lr_encoder: 1e-5 lr_others: 5e-5 weight_decay_encoder: 0.01 weight_decay_other: 0.01 max_grad_norm: 1.0 # Directory Paths root_dir: span_gliner_logs train_data: "data/pilener_train.json" # see https://github.com/urchade/GLiNER/tree/main/data val_data_dir: "/workspace/GNER/regen_data/data/IE_INSTRUCTIONS/NER copy" # "NER_datasets": val data from the paper can be obtained from "https://drive.google.com/file/d/1T-5IbocGka35I7X3CE6yKe5N_Xg2lVKT/view" # Pretrained Model Path # Use "none" if no pretrained model is being used prev_path: null save_total_limit: 10 #maximum amount of checkpoints to save # Advanced Training Settings size_sup: -1 max_types: 25 shuffle_types: true random_drop: true max_neg_type_ratio: 1 max_len: 512 freeze_token_rep: false