ppo lunar lander v0
Browse files- README.md +37 -0
- config.json +1 -0
- ppo_lunarlander_v0.zip +3 -0
- ppo_lunarlander_v0/_stable_baselines3_version +1 -0
- ppo_lunarlander_v0/data +95 -0
- ppo_lunarlander_v0/policy.optimizer.pth +3 -0
- ppo_lunarlander_v0/policy.pth +3 -0
- ppo_lunarlander_v0/pytorch_variables.pth +3 -0
- ppo_lunarlander_v0/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 262.34 +/- 22.17
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f60cd50ac10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f60cd50aca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f60cd50ad30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f60cd50adc0>", "_build": "<function ActorCriticPolicy._build at 0x7f60cd50ae50>", "forward": "<function ActorCriticPolicy.forward at 0x7f60cd50aee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f60cd50af70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f60cd50e040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f60cd50e0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f60cd50e160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f60cd50e1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f60cd50e280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f60cd506810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673626237281138368, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI2YlT0p4Ga6QJjxO4vykTf3Xli5s1BlNgAAgD8AAIA/za+2PY/aULoV3hu3iZWyMNPinrvyIDQ2AACAPwAAgD8AMDg7KVhSuld5K7sJi/M2Ae9bu1qfWbYAAIA/AACAP6ZEzz2uB5G6+gbrOKVAWDbIigI7QrMJuAAAgD8AAIA/prq3PQroVDxZ1au9ZFYkvhULXr14x5S8AAAAAAAAAAAazq694TShuiE5j7pEaGU2ukiDuoq6pDkAAAAAAACAPzOb47yPciK6Ssvsujx+crU1Qh+7cvIHOgAAgD8AAIA/miBHvtLtpbvmFaU6cJLlN3lL+jz7J8G5AACAPwAAgD8AOnC8KaBzuiihlDba7EIyrTaCOprwsbUAAIA/AACAP2YE7rwp6H+64hipO/BpPTjVRno5Y6kjuAAAgD8AAIA/5pkTPcO9QbrmfOm02/JFsL6HvzsCQ0M0AACAPwAAgD9m3bm9FACPutFTJDrRbL+0FYAAOuLLe7MAAAAAAACAPzOLPL3MILo/dftXvmV4M757JS67tWMPvQAAAAAAAAAAM7PBPCnYQbqfcJE6MzeYszhljrqiAqm5AACAPwAAgD/mvsK9w3EGusPYKjWPZQA2esZVOh0+9DQAAIA/AAAAAJpBA7z2IAe6k9jaOppAwzTHLxK7NuQBugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiGh0B7FPZ0CUhpRSlIwBbJRN6AOMAXSUR0CQlGcHWz4UdX2UKGgGaAloD0MIFf4Mb9YLYECUhpRSlGgVTegDaBZHQJCUeCYkVvd1fZQoaAZoCWgPQwhZ+Ppal3o1QJSGlFKUaBVNDwFoFkdAkJXSLVFx43V9lChoBmgJaA9DCAvVzcVfomBAlIaUUpRoFU3oA2gWR0CQnLgx8D0UdX2UKGgGaAloD0MIVtgMcEH8YUCUhpRSlGgVTegDaBZHQJCgs4bS7Xh1fZQoaAZoCWgPQwhM/FHUmaReQJSGlFKUaBVN6ANoFkdAkKHDQE6kqXV9lChoBmgJaA9DCHv3x3vVgGJAlIaUUpRoFU3oA2gWR0CQo2Uu+RHPdX2UKGgGaAloD0MIrhBWYwk0YECUhpRSlGgVTegDaBZHQJCkH6tT1kF1fZQoaAZoCWgPQwg2yY/4FaFjQJSGlFKUaBVN6ANoFkdAkKUNet0V8HV9lChoBmgJaA9DCL5muWz0LmBAlIaUUpRoFU3oA2gWR0CQtSM4cWCVdX2UKGgGaAloD0MI001iEFh4XUCUhpRSlGgVTegDaBZHQJC2F0EHMU11fZQoaAZoCWgPQwijA5Kwbx1gQJSGlFKUaBVN6ANoFkdAkLcKXfIjnnV9lChoBmgJaA9DCNpU3SObM2FAlIaUUpRoFU3oA2gWR0CQuSWPtD2KdX2UKGgGaAloD0MIIVfqWZACY0CUhpRSlGgVTegDaBZHQJC7tC6Ymb91fZQoaAZoCWgPQwg8MevFUPthQJSGlFKUaBVN6ANoFkdAkN+Ugr6LwXV9lChoBmgJaA9DCB/0bFZ9kGRAlIaUUpRoFU3oA2gWR0CQ5YASFoL5dX2UKGgGaAloD0MIgA2IEFcBZECUhpRSlGgVTegDaBZHQJDnXUnXumd1fZQoaAZoCWgPQwiJKZFELytoQJSGlFKUaBVN6ANoFkdAkOdtY8uBc3V9lChoBmgJaA9DCBTtKqT8sWVAlIaUUpRoFU3oA2gWR0CQ6LgYxcmjdX2UKGgGaAloD0MIxRouck87Y0CUhpRSlGgVTegDaBZHQJDvOxFAmiR1fZQoaAZoCWgPQwirI0c6A25jQJSGlFKUaBVN6ANoFkdAkPMApz90inV9lChoBmgJaA9DCOtWz0lvDWBAlIaUUpRoFU3oA2gWR0CQ8/np0OmSdX2UKGgGaAloD0MIPjxLkJHQZUCUhpRSlGgVTegDaBZHQJD1cODrZ8N1fZQoaAZoCWgPQwhI4A8/fwJhQJSGlFKUaBVN6ANoFkdAkPYefEn9enV9lChoBmgJaA9DCJMbRdaat2FAlIaUUpRoFU3oA2gWR0CQ9v1XNke7dX2UKGgGaAloD0MIVn+EYcCtXkCUhpRSlGgVTegDaBZHQJEG0XqJMxp1fZQoaAZoCWgPQwieKXRe45ZoQJSGlFKUaBVN6ANoFkdAkQfMUVSGanV9lChoBmgJaA9DCMQFoFG6wV9AlIaUUpRoFU3oA2gWR0CRCNQNkOI7dX2UKGgGaAloD0MIOs/Yl+y8ZkCUhpRSlGgVTegDaBZHQJELFwWFev91fZQoaAZoCWgPQwgEWU+tPrhkQJSGlFKUaBVN6ANoFkdAkQ4OZXuE3HV9lChoBmgJaA9DCE2giEUMz15AlIaUUpRoFU3oA2gWR0CRLLb5uZTidX2UKGgGaAloD0MIHXbfMbxOY0CUhpRSlGgVTegDaBZHQJExmG+K0lZ1fZQoaAZoCWgPQwiuKvuuCGZnQJSGlFKUaBVN6ANoFkdAkTNhpDeCTXV9lChoBmgJaA9DCHXKoxthblxAlIaUUpRoFU3oA2gWR0CRM3F98Z1ndX2UKGgGaAloD0MIb0vkgjPkXECUhpRSlGgVTegDaBZHQJE0rrqt5lh1fZQoaAZoCWgPQwiPiv87Ir9nQJSGlFKUaBVN6ANoFkdAkTp2FWXC0nV9lChoBmgJaA9DCHODoQ4ryGFAlIaUUpRoFU3oA2gWR0CRPfhUipvQdX2UKGgGaAloD0MITl/P1yzjY0CUhpRSlGgVTegDaBZHQJE+4bvPTod1fZQoaAZoCWgPQwi8XS9NEeRIQJSGlFKUaBVL7WgWR0CRPyES/TLGdX2UKGgGaAloD0MIueLiqNwpZUCUhpRSlGgVTegDaBZHQJFAVKSPluF1fZQoaAZoCWgPQwgSiULLuidiQJSGlFKUaBVN6ANoFkdAkUEBPj4pMHV9lChoBmgJaA9DCII3pFGBdmJAlIaUUpRoFU3oA2gWR0CRQeeNkvsadX2UKGgGaAloD0MIdy0hH/QQZ0CUhpRSlGgVTegDaBZHQJFRo5Ke05V1fZQoaAZoCWgPQwhVoYFYNrdnQJSGlFKUaBVN6ANoFkdAkVKtl7MPjHV9lChoBmgJaA9DCHx/g/bqZ2RAlIaUUpRoFU3oA2gWR0CRU7e6qbSadX2UKGgGaAloD0MILQd6qO26ZUCUhpRSlGgVTegDaBZHQJFWFRceKbd1fZQoaAZoCWgPQwh9IeS8fzhjQJSGlFKUaBVN6ANoFkdAkVkvbTMJQnV9lChoBmgJaA9DCDgR/dp6zGFAlIaUUpRoFU3oA2gWR0CRd9r6LwWndX2UKGgGaAloD0MIxVT6CWffIkCUhpRSlGgVS/BoFkdAkXgsxj8UEnV9lChoBmgJaA9DCNRJtrocDmFAlIaUUpRoFU3oA2gWR0CRfSnRb8m8dX2UKGgGaAloD0MIC9XNxV9zZUCUhpRSlGgVTegDaBZHQJF/MM+eOGV1fZQoaAZoCWgPQwghc2VQbXRmQJSGlFKUaBVN6ANoFkdAkYEPEOy3TnV9lChoBmgJaA9DCL7bvHHSGGNAlIaUUpRoFU3oA2gWR0CRiDsg+yJLdX2UKGgGaAloD0MIM2yU9ZvZZECUhpRSlGgVTegDaBZHQJGM+S7oSth1fZQoaAZoCWgPQwiUMxR3vABlQJSGlFKUaBVN6ANoFkdAkY3/GACnxnV9lChoBmgJaA9DCJvLDYY6wGVAlIaUUpRoFU3oA2gWR0CRjkMpPRAsdX2UKGgGaAloD0MI41KVtjimY0CUhpRSlGgVTegDaBZHQJGPitzS1E51fZQoaAZoCWgPQwjNzMzMzPxgQJSGlFKUaBVN6ANoFkdAkZBD4DcM3XV9lChoBmgJaA9DCHnJ/+RvO2RAlIaUUpRoFU3oA2gWR0CRkTCuloDgdX2UKGgGaAloD0MIzR/T2jQwQ0CUhpRSlGgVS+5oFkdAkZuKO1fE43V9lChoBmgJaA9DCOZbH9YbX2NAlIaUUpRoFU3oA2gWR0CRoDnZkCmudX2UKGgGaAloD0MIm/7sR4qTYkCUhpRSlGgVTegDaBZHQJGhI8+zMRp1fZQoaAZoCWgPQwhREhJpm3tiQJSGlFKUaBVN6ANoFkdAkaIA5myxA3V9lChoBmgJaA9DCNWWOshrUmNAlIaUUpRoFU3oA2gWR0CRp1ULlV94dX2UKGgGaAloD0MIXi7iO7FIaECUhpRSlGgVTegDaBZHQJHFA68xsVN1fZQoaAZoCWgPQwgo8iTpGkZjQJSGlFKUaBVN6ANoFkdAkcVQ84gieXV9lChoBmgJaA9DCGQke4SaXmFAlIaUUpRoFU3oA2gWR0CRydXQdCE6dX2UKGgGaAloD0MI0uXN4dqLZkCUhpRSlGgVTegDaBZHQJHLjI7vG6x1fZQoaAZoCWgPQwgzwAXZMltgQJSGlFKUaBVN6ANoFkdAkczqbayrxXV9lChoBmgJaA9DCOY+OQoQfWNAlIaUUpRoFU3oA2gWR0CR03NbTtsvdX2UKGgGaAloD0MIrBqEuV2iYkCUhpRSlGgVTegDaBZHQJHXJ3aBZp11fZQoaAZoCWgPQwjRQCybOX1iQJSGlFKUaBVN6ANoFkdAkdgaWszVMHV9lChoBmgJaA9DCI2bGmg+u2NAlIaUUpRoFU3oA2gWR0CR2FwaR6njdX2UKGgGaAloD0MIeVvptdlRZkCUhpRSlGgVTegDaBZHQJHaJn6Eal11fZQoaAZoCWgPQwidEDrokn1uQJSGlFKUaBVNlQFoFkdAkdsDDGcWkHV9lChoBmgJaA9DCAowLH8+yGdAlIaUUpRoFU3oA2gWR0CR2wCNjslcdX2UKGgGaAloD0MIu/CD86mbUUCUhpRSlGgVS9doFkdAkePxD5TIenV9lChoBmgJaA9DCOavkLmylGBAlIaUUpRoFU3oA2gWR0CR5Gih37k5dX2UKGgGaAloD0MI9IsS9BfPY0CUhpRSlGgVTegDaBZHQJHpNpJwsGx1fZQoaAZoCWgPQwjpK0gzlrFnQJSGlFKUaBVN6ANoFkdAkeoV1GLDRHV9lChoBmgJaA9DCFn3j4XosmRAlIaUUpRoFU3oA2gWR0CR6uvCuU2UdX2UKGgGaAloD0MIFsH/VjI3YUCUhpRSlGgVTegDaBZHQJHvV7iQ1aZ1fZQoaAZoCWgPQwj/eK9amSFdQJSGlFKUaBVN6ANoFkdAkg0pTdcjaHV9lChoBmgJaA9DCEpgcw6eNV5AlIaUUpRoFU3oA2gWR0CSEobBGhEjdX2UKGgGaAloD0MI7IhDNpCXXkCUhpRSlGgVTegDaBZHQJIUfUkOZst1fZQoaAZoCWgPQwjQ8dHijJZjQJSGlFKUaBVN6ANoFkdAkhX5f6XSjXV9lChoBmgJaA9DCEj6tIr+T2JAlIaUUpRoFU3oA2gWR0CSHPcABDG+dX2UKGgGaAloD0MIFw0Zj9JJZUCUhpRSlGgVTegDaBZHQJIg4i+tbLV1fZQoaAZoCWgPQwgGL/oK0gFjQJSGlFKUaBVN6ANoFkdAkiHs4o7V8XV9lChoBmgJaA9DCCiZnNoZTmBAlIaUUpRoFU3oA2gWR0CSIjFDfFaTdX2UKGgGaAloD0MIZ2SQuwgeZ0CUhpRSlGgVTegDaBZHQJIlDk1dgOV1fZQoaAZoCWgPQwjGhm72B+BeQJSGlFKUaBVN6ANoFkdAkiUMf3evZHV9lChoBmgJaA9DCFG8ytqmsmNAlIaUUpRoFU3oA2gWR0CSLu0E5hjOdX2UKGgGaAloD0MIzTrj+2I3ZECUhpRSlGgVTegDaBZHQJIvbAvcrRV1fZQoaAZoCWgPQwgxzt+EQohBQJSGlFKUaBVNIwFoFkdAkjD9eMQ2/HV9lChoBmgJaA9DCME5I0r74WVAlIaUUpRoFU3oA2gWR0CSM+qIJqqPdX2UKGgGaAloD0MIMshdhCmlY0CUhpRSlGgVTegDaBZHQJI01CQcPvt1fZQoaAZoCWgPQwjH1F3ZhWNgQJSGlFKUaBVN6ANoFkdAkjWwqiGnGnV9lChoBmgJaA9DCOcAwRw9xV9AlIaUUpRoFU3oA2gWR0CSOz5vtMPCdX2UKGgGaAloD0MIoFIlyl5rYECUhpRSlGgVTegDaBZHQJJJtzIV/MJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo_lunarlander_v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecf86dc60096f483a88b5656e93f065b71ca6cd41a411c0b310e79390efe3d44
|
3 |
+
size 147420
|
ppo_lunarlander_v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo_lunarlander_v0/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f60cd50ac10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f60cd50aca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f60cd50ad30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f60cd50adc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f60cd50ae50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f60cd50aee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f60cd50af70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f60cd50e040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f60cd50e0d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f60cd50e160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f60cd50e1f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f60cd50e280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f60cd506810>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673626237281138368,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI2YlT0p4Ga6QJjxO4vykTf3Xli5s1BlNgAAgD8AAIA/za+2PY/aULoV3hu3iZWyMNPinrvyIDQ2AACAPwAAgD8AMDg7KVhSuld5K7sJi/M2Ae9bu1qfWbYAAIA/AACAP6ZEzz2uB5G6+gbrOKVAWDbIigI7QrMJuAAAgD8AAIA/prq3PQroVDxZ1au9ZFYkvhULXr14x5S8AAAAAAAAAAAazq694TShuiE5j7pEaGU2ukiDuoq6pDkAAAAAAACAPzOb47yPciK6Ssvsujx+crU1Qh+7cvIHOgAAgD8AAIA/miBHvtLtpbvmFaU6cJLlN3lL+jz7J8G5AACAPwAAgD8AOnC8KaBzuiihlDba7EIyrTaCOprwsbUAAIA/AACAP2YE7rwp6H+64hipO/BpPTjVRno5Y6kjuAAAgD8AAIA/5pkTPcO9QbrmfOm02/JFsL6HvzsCQ0M0AACAPwAAgD9m3bm9FACPutFTJDrRbL+0FYAAOuLLe7MAAAAAAACAPzOLPL3MILo/dftXvmV4M757JS67tWMPvQAAAAAAAAAAM7PBPCnYQbqfcJE6MzeYszhljrqiAqm5AACAPwAAgD/mvsK9w3EGusPYKjWPZQA2esZVOh0+9DQAAIA/AAAAAJpBA7z2IAe6k9jaOppAwzTHLxK7NuQBugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiGh0B7FPZ0CUhpRSlIwBbJRN6AOMAXSUR0CQlGcHWz4UdX2UKGgGaAloD0MIFf4Mb9YLYECUhpRSlGgVTegDaBZHQJCUeCYkVvd1fZQoaAZoCWgPQwhZ+Ppal3o1QJSGlFKUaBVNDwFoFkdAkJXSLVFx43V9lChoBmgJaA9DCAvVzcVfomBAlIaUUpRoFU3oA2gWR0CQnLgx8D0UdX2UKGgGaAloD0MIVtgMcEH8YUCUhpRSlGgVTegDaBZHQJCgs4bS7Xh1fZQoaAZoCWgPQwhM/FHUmaReQJSGlFKUaBVN6ANoFkdAkKHDQE6kqXV9lChoBmgJaA9DCHv3x3vVgGJAlIaUUpRoFU3oA2gWR0CQo2Uu+RHPdX2UKGgGaAloD0MIrhBWYwk0YECUhpRSlGgVTegDaBZHQJCkH6tT1kF1fZQoaAZoCWgPQwg2yY/4FaFjQJSGlFKUaBVN6ANoFkdAkKUNet0V8HV9lChoBmgJaA9DCL5muWz0LmBAlIaUUpRoFU3oA2gWR0CQtSM4cWCVdX2UKGgGaAloD0MI001iEFh4XUCUhpRSlGgVTegDaBZHQJC2F0EHMU11fZQoaAZoCWgPQwijA5Kwbx1gQJSGlFKUaBVN6ANoFkdAkLcKXfIjnnV9lChoBmgJaA9DCNpU3SObM2FAlIaUUpRoFU3oA2gWR0CQuSWPtD2KdX2UKGgGaAloD0MIIVfqWZACY0CUhpRSlGgVTegDaBZHQJC7tC6Ymb91fZQoaAZoCWgPQwg8MevFUPthQJSGlFKUaBVN6ANoFkdAkN+Ugr6LwXV9lChoBmgJaA9DCB/0bFZ9kGRAlIaUUpRoFU3oA2gWR0CQ5YASFoL5dX2UKGgGaAloD0MIgA2IEFcBZECUhpRSlGgVTegDaBZHQJDnXUnXumd1fZQoaAZoCWgPQwiJKZFELytoQJSGlFKUaBVN6ANoFkdAkOdtY8uBc3V9lChoBmgJaA9DCBTtKqT8sWVAlIaUUpRoFU3oA2gWR0CQ6LgYxcmjdX2UKGgGaAloD0MIxRouck87Y0CUhpRSlGgVTegDaBZHQJDvOxFAmiR1fZQoaAZoCWgPQwirI0c6A25jQJSGlFKUaBVN6ANoFkdAkPMApz90inV9lChoBmgJaA9DCOtWz0lvDWBAlIaUUpRoFU3oA2gWR0CQ8/np0OmSdX2UKGgGaAloD0MIPjxLkJHQZUCUhpRSlGgVTegDaBZHQJD1cODrZ8N1fZQoaAZoCWgPQwhI4A8/fwJhQJSGlFKUaBVN6ANoFkdAkPYefEn9enV9lChoBmgJaA9DCJMbRdaat2FAlIaUUpRoFU3oA2gWR0CQ9v1XNke7dX2UKGgGaAloD0MIVn+EYcCtXkCUhpRSlGgVTegDaBZHQJEG0XqJMxp1fZQoaAZoCWgPQwieKXRe45ZoQJSGlFKUaBVN6ANoFkdAkQfMUVSGanV9lChoBmgJaA9DCMQFoFG6wV9AlIaUUpRoFU3oA2gWR0CRCNQNkOI7dX2UKGgGaAloD0MIOs/Yl+y8ZkCUhpRSlGgVTegDaBZHQJELFwWFev91fZQoaAZoCWgPQwgEWU+tPrhkQJSGlFKUaBVN6ANoFkdAkQ4OZXuE3HV9lChoBmgJaA9DCE2giEUMz15AlIaUUpRoFU3oA2gWR0CRLLb5uZTidX2UKGgGaAloD0MIHXbfMbxOY0CUhpRSlGgVTegDaBZHQJExmG+K0lZ1fZQoaAZoCWgPQwiuKvuuCGZnQJSGlFKUaBVN6ANoFkdAkTNhpDeCTXV9lChoBmgJaA9DCHXKoxthblxAlIaUUpRoFU3oA2gWR0CRM3F98Z1ndX2UKGgGaAloD0MIb0vkgjPkXECUhpRSlGgVTegDaBZHQJE0rrqt5lh1fZQoaAZoCWgPQwiPiv87Ir9nQJSGlFKUaBVN6ANoFkdAkTp2FWXC0nV9lChoBmgJaA9DCHODoQ4ryGFAlIaUUpRoFU3oA2gWR0CRPfhUipvQdX2UKGgGaAloD0MITl/P1yzjY0CUhpRSlGgVTegDaBZHQJE+4bvPTod1fZQoaAZoCWgPQwi8XS9NEeRIQJSGlFKUaBVL7WgWR0CRPyES/TLGdX2UKGgGaAloD0MIueLiqNwpZUCUhpRSlGgVTegDaBZHQJFAVKSPluF1fZQoaAZoCWgPQwgSiULLuidiQJSGlFKUaBVN6ANoFkdAkUEBPj4pMHV9lChoBmgJaA9DCII3pFGBdmJAlIaUUpRoFU3oA2gWR0CRQeeNkvsadX2UKGgGaAloD0MIdy0hH/QQZ0CUhpRSlGgVTegDaBZHQJFRo5Ke05V1fZQoaAZoCWgPQwhVoYFYNrdnQJSGlFKUaBVN6ANoFkdAkVKtl7MPjHV9lChoBmgJaA9DCHx/g/bqZ2RAlIaUUpRoFU3oA2gWR0CRU7e6qbSadX2UKGgGaAloD0MILQd6qO26ZUCUhpRSlGgVTegDaBZHQJFWFRceKbd1fZQoaAZoCWgPQwh9IeS8fzhjQJSGlFKUaBVN6ANoFkdAkVkvbTMJQnV9lChoBmgJaA9DCDgR/dp6zGFAlIaUUpRoFU3oA2gWR0CRd9r6LwWndX2UKGgGaAloD0MIxVT6CWffIkCUhpRSlGgVS/BoFkdAkXgsxj8UEnV9lChoBmgJaA9DCNRJtrocDmFAlIaUUpRoFU3oA2gWR0CRfSnRb8m8dX2UKGgGaAloD0MIC9XNxV9zZUCUhpRSlGgVTegDaBZHQJF/MM+eOGV1fZQoaAZoCWgPQwghc2VQbXRmQJSGlFKUaBVN6ANoFkdAkYEPEOy3TnV9lChoBmgJaA9DCL7bvHHSGGNAlIaUUpRoFU3oA2gWR0CRiDsg+yJLdX2UKGgGaAloD0MIM2yU9ZvZZECUhpRSlGgVTegDaBZHQJGM+S7oSth1fZQoaAZoCWgPQwiUMxR3vABlQJSGlFKUaBVN6ANoFkdAkY3/GACnxnV9lChoBmgJaA9DCJvLDYY6wGVAlIaUUpRoFU3oA2gWR0CRjkMpPRAsdX2UKGgGaAloD0MI41KVtjimY0CUhpRSlGgVTegDaBZHQJGPitzS1E51fZQoaAZoCWgPQwjNzMzMzPxgQJSGlFKUaBVN6ANoFkdAkZBD4DcM3XV9lChoBmgJaA9DCHnJ/+RvO2RAlIaUUpRoFU3oA2gWR0CRkTCuloDgdX2UKGgGaAloD0MIzR/T2jQwQ0CUhpRSlGgVS+5oFkdAkZuKO1fE43V9lChoBmgJaA9DCOZbH9YbX2NAlIaUUpRoFU3oA2gWR0CRoDnZkCmudX2UKGgGaAloD0MIm/7sR4qTYkCUhpRSlGgVTegDaBZHQJGhI8+zMRp1fZQoaAZoCWgPQwhREhJpm3tiQJSGlFKUaBVN6ANoFkdAkaIA5myxA3V9lChoBmgJaA9DCNWWOshrUmNAlIaUUpRoFU3oA2gWR0CRp1ULlV94dX2UKGgGaAloD0MIXi7iO7FIaECUhpRSlGgVTegDaBZHQJHFA68xsVN1fZQoaAZoCWgPQwgo8iTpGkZjQJSGlFKUaBVN6ANoFkdAkcVQ84gieXV9lChoBmgJaA9DCGQke4SaXmFAlIaUUpRoFU3oA2gWR0CRydXQdCE6dX2UKGgGaAloD0MI0uXN4dqLZkCUhpRSlGgVTegDaBZHQJHLjI7vG6x1fZQoaAZoCWgPQwgzwAXZMltgQJSGlFKUaBVN6ANoFkdAkczqbayrxXV9lChoBmgJaA9DCOY+OQoQfWNAlIaUUpRoFU3oA2gWR0CR03NbTtsvdX2UKGgGaAloD0MIrBqEuV2iYkCUhpRSlGgVTegDaBZHQJHXJ3aBZp11fZQoaAZoCWgPQwjRQCybOX1iQJSGlFKUaBVN6ANoFkdAkdgaWszVMHV9lChoBmgJaA9DCI2bGmg+u2NAlIaUUpRoFU3oA2gWR0CR2FwaR6njdX2UKGgGaAloD0MIeVvptdlRZkCUhpRSlGgVTegDaBZHQJHaJn6Eal11fZQoaAZoCWgPQwidEDrokn1uQJSGlFKUaBVNlQFoFkdAkdsDDGcWkHV9lChoBmgJaA9DCAowLH8+yGdAlIaUUpRoFU3oA2gWR0CR2wCNjslcdX2UKGgGaAloD0MIu/CD86mbUUCUhpRSlGgVS9doFkdAkePxD5TIenV9lChoBmgJaA9DCOavkLmylGBAlIaUUpRoFU3oA2gWR0CR5Gih37k5dX2UKGgGaAloD0MI9IsS9BfPY0CUhpRSlGgVTegDaBZHQJHpNpJwsGx1fZQoaAZoCWgPQwjpK0gzlrFnQJSGlFKUaBVN6ANoFkdAkeoV1GLDRHV9lChoBmgJaA9DCFn3j4XosmRAlIaUUpRoFU3oA2gWR0CR6uvCuU2UdX2UKGgGaAloD0MIFsH/VjI3YUCUhpRSlGgVTegDaBZHQJHvV7iQ1aZ1fZQoaAZoCWgPQwj/eK9amSFdQJSGlFKUaBVN6ANoFkdAkg0pTdcjaHV9lChoBmgJaA9DCEpgcw6eNV5AlIaUUpRoFU3oA2gWR0CSEobBGhEjdX2UKGgGaAloD0MI7IhDNpCXXkCUhpRSlGgVTegDaBZHQJIUfUkOZst1fZQoaAZoCWgPQwjQ8dHijJZjQJSGlFKUaBVN6ANoFkdAkhX5f6XSjXV9lChoBmgJaA9DCEj6tIr+T2JAlIaUUpRoFU3oA2gWR0CSHPcABDG+dX2UKGgGaAloD0MIFw0Zj9JJZUCUhpRSlGgVTegDaBZHQJIg4i+tbLV1fZQoaAZoCWgPQwgGL/oK0gFjQJSGlFKUaBVN6ANoFkdAkiHs4o7V8XV9lChoBmgJaA9DCCiZnNoZTmBAlIaUUpRoFU3oA2gWR0CSIjFDfFaTdX2UKGgGaAloD0MIZ2SQuwgeZ0CUhpRSlGgVTegDaBZHQJIlDk1dgOV1fZQoaAZoCWgPQwjGhm72B+BeQJSGlFKUaBVN6ANoFkdAkiUMf3evZHV9lChoBmgJaA9DCFG8ytqmsmNAlIaUUpRoFU3oA2gWR0CSLu0E5hjOdX2UKGgGaAloD0MIzTrj+2I3ZECUhpRSlGgVTegDaBZHQJIvbAvcrRV1fZQoaAZoCWgPQwgxzt+EQohBQJSGlFKUaBVNIwFoFkdAkjD9eMQ2/HV9lChoBmgJaA9DCME5I0r74WVAlIaUUpRoFU3oA2gWR0CSM+qIJqqPdX2UKGgGaAloD0MIMshdhCmlY0CUhpRSlGgVTegDaBZHQJI01CQcPvt1fZQoaAZoCWgPQwjH1F3ZhWNgQJSGlFKUaBVN6ANoFkdAkjWwqiGnGnV9lChoBmgJaA9DCOcAwRw9xV9AlIaUUpRoFU3oA2gWR0CSOz5vtMPCdX2UKGgGaAloD0MIoFIlyl5rYECUhpRSlGgVTegDaBZHQJJJtzIV/MJ1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo_lunarlander_v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3f32f9d4cb00865075cfaea9122e6c24a8169cea8e37211d3edcd7d833aaf33
|
3 |
+
size 87929
|
ppo_lunarlander_v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17d4a0606f795699edf0f8305610e04266630cd116852fed523cc7d673a38c73
|
3 |
+
size 43393
|
ppo_lunarlander_v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunarlander_v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (200 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 262.3441606655234, "std_reward": 22.168362835167454, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-13T16:36:17.485675"}
|