Training in progress, epoch 1
Browse files- added_tokens.json +7 -0
- config.json +36 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +9 -0
- spiece.model +3 -0
- tokenizer_config.json +76 -0
- train-v1.1.json +0 -0
- train_factual_consistency.ipynb +240 -0
- training_args.bin +3 -0
- utils.py +123 -0
added_tokens.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<pad>": 0,
|
3 |
+
"<unk>": 1,
|
4 |
+
"[CLS]": 2,
|
5 |
+
"[MASK]": 4,
|
6 |
+
"[SEP]": 3
|
7 |
+
}
|
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "line-corporation/line-distilbert-base-japanese",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"ConsistentSentenceClassifier"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"id2label": {
|
12 |
+
"0": "contradiction",
|
13 |
+
"1": "neutral",
|
14 |
+
"2": "entailment"
|
15 |
+
},
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"label2id": {
|
18 |
+
"contradiction": 0,
|
19 |
+
"entailment": 2,
|
20 |
+
"neutral": 1
|
21 |
+
},
|
22 |
+
"max_position_embeddings": 512,
|
23 |
+
"model_type": "distilbert",
|
24 |
+
"n_heads": 12,
|
25 |
+
"n_layers": 6,
|
26 |
+
"output_hidden_states": true,
|
27 |
+
"pad_token_id": 0,
|
28 |
+
"problem_type": "single_label_classification",
|
29 |
+
"qa_dropout": 0.1,
|
30 |
+
"seq_classif_dropout": 0.2,
|
31 |
+
"sinusoidal_pos_embds": true,
|
32 |
+
"tie_weights_": true,
|
33 |
+
"torch_dtype": "float32",
|
34 |
+
"transformers_version": "4.34.0",
|
35 |
+
"vocab_size": 32768
|
36 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daf276874da332369d4beb0dde2f6db9d412102c69746a1cce536d0d3851b783
|
3 |
+
size 274758317
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "<pad>",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": "<unk>"
|
9 |
+
}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcfafc8c0662d9c8f39621a64c74260f2ad120310c8dd24886de2dddaf599b4e
|
3 |
+
size 439391
|
tokenizer_config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<pad>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<unk>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"auto_map": {
|
46 |
+
"AutoTokenizer": [
|
47 |
+
"line-corporation/line-distilbert-base-japanese--distilbert_japanese_tokenizer.DistilBertJapaneseTokenizer",
|
48 |
+
null
|
49 |
+
]
|
50 |
+
},
|
51 |
+
"bos_token": "[CLS]",
|
52 |
+
"clean_up_tokenization_spaces": true,
|
53 |
+
"cls_token": "[CLS]",
|
54 |
+
"do_lower_case": true,
|
55 |
+
"do_subword_tokenize": true,
|
56 |
+
"do_word_tokenize": true,
|
57 |
+
"eos_token": "[SEP]",
|
58 |
+
"jumanpp_kwargs": null,
|
59 |
+
"keep_accents": true,
|
60 |
+
"mask_token": "[MASK]",
|
61 |
+
"mecab_kwargs": {
|
62 |
+
"mecab_dic": "unidic_lite"
|
63 |
+
},
|
64 |
+
"model_max_length": 1000000000000000019884624838656,
|
65 |
+
"never_split": null,
|
66 |
+
"pad_token": "<pad>",
|
67 |
+
"remove_space": true,
|
68 |
+
"sep_token": "[SEP]",
|
69 |
+
"subword_tokenizer_type": "sentencepiece",
|
70 |
+
"sudachi_kwargs": null,
|
71 |
+
"tokenize_chinese_chars": false,
|
72 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
73 |
+
"tokenizer_file": null,
|
74 |
+
"unk_token": "<unk>",
|
75 |
+
"word_tokenizer_type": "mecab"
|
76 |
+
}
|
train-v1.1.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
train_factual_consistency.ipynb
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "b12ae8a3-9e08-402c-894c-31697fad6c56",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"data": {
|
11 |
+
"application/vnd.jupyter.widget-view+json": {
|
12 |
+
"model_id": "8950b2cbd1c44912917219b84af806ce",
|
13 |
+
"version_major": 2,
|
14 |
+
"version_minor": 0
|
15 |
+
},
|
16 |
+
"text/plain": [
|
17 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
"metadata": {},
|
21 |
+
"output_type": "display_data"
|
22 |
+
}
|
23 |
+
],
|
24 |
+
"source": [
|
25 |
+
"from huggingface_hub import notebook_login\n",
|
26 |
+
"\n",
|
27 |
+
"notebook_login()"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 2,
|
33 |
+
"id": "160c80c1-0ca4-45df-8171-87cd3c88a223",
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"\n",
|
38 |
+
"from transformers import (\n",
|
39 |
+
" AutoTokenizer,\n",
|
40 |
+
" DataCollatorWithPadding,\n",
|
41 |
+
" Trainer,\n",
|
42 |
+
" TrainingArguments,\n",
|
43 |
+
")\n",
|
44 |
+
"from utils import ConsistentSentenceClassifier, get_metrics, load_dataset"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
"execution_count": 3,
|
50 |
+
"id": "25800588-5d42-4524-9dc6-a6a0c180b8b0",
|
51 |
+
"metadata": {},
|
52 |
+
"outputs": [
|
53 |
+
{
|
54 |
+
"name": "stdout",
|
55 |
+
"output_type": "stream",
|
56 |
+
"text": [
|
57 |
+
" text label\n",
|
58 |
+
"512 カーキ色の服を着た男性が、口元にリンゴを当てています。[SEP]カーキ色の服を着た男性が、口... 0\n",
|
59 |
+
"513 男性がグラウンドでボールを投げています。[SEP]白い髯を生やした男性がボールを投げています。 1\n",
|
60 |
+
"514 椅子に座った子供が、手づかみで食事をしています。[SEP]椅子に座った子供が手づかみで、食事... 2\n",
|
61 |
+
"515 プロペラ機が何台も駐機しています。[SEP]プロペラ機が何台も連なって飛んでいます。 0\n",
|
62 |
+
"516 消火栓から水が勢いよく噴き出しています。[SEP]水が噴き出している消火栓の水を浴びるように... 1\n",
|
63 |
+
"517 冷蔵庫のないキッチンにナイフとフォークが置かれています。[SEP]冷蔵庫の置かれたキッチンに... 0\n",
|
64 |
+
"518 うみでサーフィンをしているひとがいます。[SEP]黒いウェットスーツを着た人がサーフボードに... 1\n",
|
65 |
+
"519 池から白い鳥が飛び立っています。[SEP]森にある水の上を鳥が飛んでいます。 1\n",
|
66 |
+
"520 丈夫なビーチパラソルが立っています。[SEP]ビーチパラソルの支柱が折れ曲がっています。 0\n",
|
67 |
+
"521 白髪の男性が少女から花束を受け取っています。[SEP]花束を持った男性の前に多くの子供たちが... 1\n",
|
68 |
+
" text label\n",
|
69 |
+
"0 赤いひとつの傘に、二人の人が入っています。[SEP]歩道を歩く通行人が傘をさして歩いています。 1\n",
|
70 |
+
"1 川を小さなボートが進んで行きます。[SEP]川を豪華客船が進んでいきます。 0\n",
|
71 |
+
"2 ゲレンデのこぶでスキージャンプしています。[SEP]雪上でモーグルを楽しむ水色のウェアを着た女性。 1\n",
|
72 |
+
"3 黒いお皿に乗っているピザをカットしています。[SEP]黒い皿の上にピザが盛られています。 2\n",
|
73 |
+
"4 女性が目を細めて携帯電話で話をしています。[SEP]目を細めた女性が携帯電話で話をしています。 2\n",
|
74 |
+
"5 バナナやパパイヤなどの果物が売られている。[SEP]台の上にはバナナなどの青果が並べられています。 1\n",
|
75 |
+
"6 ヘッドライトを点灯させた白いバスが駐車場に止まっています。[SEP]ライトを点灯させているバ... 2\n",
|
76 |
+
"7 水面の上に、カイトサーフィンの凧が揚がっています。[SEP]海の上に水上スポーツ用の凧が揚が... 1\n",
|
77 |
+
"8 ホットドッグを野外で食べている人たちです。[SEP]家の中でホットドッグを食べている。 0\n",
|
78 |
+
"9 草が生い茂っている所に、3頭のゾウがいます。[SEP]草むらの中に三頭のゾウが立っているとこ... 1\n"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"data": {
|
83 |
+
"application/vnd.jupyter.widget-view+json": {
|
84 |
+
"model_id": "0e80998f107e4e9a80886e682dc73c5a",
|
85 |
+
"version_major": 2,
|
86 |
+
"version_minor": 0
|
87 |
+
},
|
88 |
+
"text/plain": [
|
89 |
+
"Map: 0%| | 0/19561 [00:00<?, ? examples/s]"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
"metadata": {},
|
93 |
+
"output_type": "display_data"
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"name": "stderr",
|
97 |
+
"output_type": "stream",
|
98 |
+
"text": [
|
99 |
+
"Asking to pad to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no padding.\n",
|
100 |
+
"Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"data": {
|
105 |
+
"application/vnd.jupyter.widget-view+json": {
|
106 |
+
"model_id": "c8bb0daae6cf4c50bf2631a47324a8fb",
|
107 |
+
"version_major": 2,
|
108 |
+
"version_minor": 0
|
109 |
+
},
|
110 |
+
"text/plain": [
|
111 |
+
"Map: 0%| | 0/512 [00:00<?, ? examples/s]"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
"metadata": {},
|
115 |
+
"output_type": "display_data"
|
116 |
+
}
|
117 |
+
],
|
118 |
+
"source": [
|
119 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"line-corporation/line-distilbert-base-japanese\")\n",
|
120 |
+
"dataset = load_dataset('train-v1.1.json')\n",
|
121 |
+
"tokenized_dataset = dataset.map(\n",
|
122 |
+
" lambda examples: tokenizer(examples[\"text\"], padding='max_length', truncation=True), batched=True\n",
|
123 |
+
")"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": null,
|
129 |
+
"id": "6bc83d4c-378c-4313-b641-8ead0c02f715",
|
130 |
+
"metadata": {},
|
131 |
+
"outputs": [
|
132 |
+
{
|
133 |
+
"name": "stderr",
|
134 |
+
"output_type": "stream",
|
135 |
+
"text": [
|
136 |
+
"WARNING:root:XRT configuration not detected. Defaulting to preview PJRT runtime. To silence this warning and continue using PJRT, explicitly set PJRT_DEVICE to a supported device or configure XRT. To disable default device selection, set PJRT_SELECT_DEFAULT_DEVICE=0\n",
|
137 |
+
"WARNING:root:For more information about the status of PJRT, see https://github.com/pytorch/xla/blob/master/docs/pjrt.md\n",
|
138 |
+
"WARNING:root:Defaulting to PJRT_DEVICE=CPU\n"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"data": {
|
143 |
+
"text/html": [
|
144 |
+
"\n",
|
145 |
+
" <div>\n",
|
146 |
+
" \n",
|
147 |
+
" <progress value='198' max='9180' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
148 |
+
" [ 198/9180 01:00 < 46:32, 3.22 it/s, Epoch 0.64/30]\n",
|
149 |
+
" </div>\n",
|
150 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
151 |
+
" <thead>\n",
|
152 |
+
" <tr style=\"text-align: left;\">\n",
|
153 |
+
" <th>Epoch</th>\n",
|
154 |
+
" <th>Training Loss</th>\n",
|
155 |
+
" <th>Validation Loss</th>\n",
|
156 |
+
" </tr>\n",
|
157 |
+
" </thead>\n",
|
158 |
+
" <tbody>\n",
|
159 |
+
" </tbody>\n",
|
160 |
+
"</table><p>"
|
161 |
+
],
|
162 |
+
"text/plain": [
|
163 |
+
"<IPython.core.display.HTML object>"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
"metadata": {},
|
167 |
+
"output_type": "display_data"
|
168 |
+
}
|
169 |
+
],
|
170 |
+
"source": [
|
171 |
+
"model = ConsistentSentenceClassifier(\n",
|
172 |
+
" freeze_bert=False)\n",
|
173 |
+
"\n",
|
174 |
+
"training_args = TrainingArguments(\n",
|
175 |
+
" output_dir=\"../factual-consistency-classification-ja-avgpool-unfrozen\",\n",
|
176 |
+
" learning_rate=1e-4,\n",
|
177 |
+
" per_device_train_batch_size=64,\n",
|
178 |
+
" per_device_eval_batch_size=8,\n",
|
179 |
+
" num_train_epochs=30,\n",
|
180 |
+
" weight_decay=0.02,\n",
|
181 |
+
" evaluation_strategy=\"epoch\",\n",
|
182 |
+
" eval_accumulation_steps=4,\n",
|
183 |
+
" save_strategy=\"epoch\",\n",
|
184 |
+
" load_best_model_at_end=True,\n",
|
185 |
+
" save_total_limit=5,\n",
|
186 |
+
" push_to_hub=True,\n",
|
187 |
+
")\n",
|
188 |
+
"\n",
|
189 |
+
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\n",
|
190 |
+
"trainer = Trainer(\n",
|
191 |
+
" model=model,\n",
|
192 |
+
" args=training_args,\n",
|
193 |
+
" train_dataset=tokenized_dataset[\"train\"],\n",
|
194 |
+
" eval_dataset=tokenized_dataset[\"test\"],\n",
|
195 |
+
" tokenizer=tokenizer,\n",
|
196 |
+
" data_collator=data_collator,\n",
|
197 |
+
" compute_metrics=get_metrics(),\n",
|
198 |
+
")\n",
|
199 |
+
"\n",
|
200 |
+
"trainer.train()\n",
|
201 |
+
"trainer.push_to_hub('factual-consistency-classification-ja-avgpool-unfrozen')"
|
202 |
+
]
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"cell_type": "code",
|
206 |
+
"execution_count": null,
|
207 |
+
"id": "a6eb93f7-5a38-49a2-be0d-e42267e23a0a",
|
208 |
+
"metadata": {},
|
209 |
+
"outputs": [],
|
210 |
+
"source": []
|
211 |
+
}
|
212 |
+
],
|
213 |
+
"metadata": {
|
214 |
+
"environment": {
|
215 |
+
"kernel": "python3",
|
216 |
+
"name": "pytorch-gpu.2-0.m112",
|
217 |
+
"type": "gcloud",
|
218 |
+
"uri": "gcr.io/deeplearning-platform-release/pytorch-gpu.2-0:m112"
|
219 |
+
},
|
220 |
+
"kernelspec": {
|
221 |
+
"display_name": "Python 3",
|
222 |
+
"language": "python",
|
223 |
+
"name": "python3"
|
224 |
+
},
|
225 |
+
"language_info": {
|
226 |
+
"codemirror_mode": {
|
227 |
+
"name": "ipython",
|
228 |
+
"version": 3
|
229 |
+
},
|
230 |
+
"file_extension": ".py",
|
231 |
+
"mimetype": "text/x-python",
|
232 |
+
"name": "python",
|
233 |
+
"nbconvert_exporter": "python",
|
234 |
+
"pygments_lexer": "ipython3",
|
235 |
+
"version": "3.10.12"
|
236 |
+
}
|
237 |
+
},
|
238 |
+
"nbformat": 4,
|
239 |
+
"nbformat_minor": 5
|
240 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16a8fea2d112223bb5fc50f0e3b8457dcd3eefa65312f57e80712e85717a5f1f
|
3 |
+
size 4155
|
utils.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import pandas as pd
|
3 |
+
import datasets
|
4 |
+
import numpy as np
|
5 |
+
import evaluate
|
6 |
+
import torch
|
7 |
+
from transformers import AutoModel, DistilBertForSequenceClassification
|
8 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
9 |
+
from typing import Optional
|
10 |
+
|
11 |
+
SEP_TOKEN = '[SEP]'
|
12 |
+
LABEL2ID = {'entailment': 2, 'neutral': 1, 'contradiction': 0}
|
13 |
+
ID2LABEL = {2: 'entailment', 1: 'neutral', 0: 'contradiction'}
|
14 |
+
|
15 |
+
def format_dataset(arr):
|
16 |
+
text = [el['sentence1'] + SEP_TOKEN + el['sentence2'] for el in arr]
|
17 |
+
label = [LABEL2ID[el['label']] for el in arr]
|
18 |
+
new_df = pd.DataFrame({'text': text, 'label': label})
|
19 |
+
return new_df.sample(frac=1, random_state=42).reset_index(drop=True)
|
20 |
+
|
21 |
+
# Load dataset
|
22 |
+
def load_dataset(path):
|
23 |
+
train_array = []
|
24 |
+
with open(path) as f:
|
25 |
+
for line in f.readlines():
|
26 |
+
if line:
|
27 |
+
train_array.append(json.loads(line))
|
28 |
+
df = format_dataset(train_array)
|
29 |
+
# Split dataset into train and val
|
30 |
+
df_train = df.iloc[512:, :]
|
31 |
+
# We do not need much test data
|
32 |
+
df_test = df.iloc[:512, :]
|
33 |
+
print(df_train[:10])
|
34 |
+
print(df_test[:10])
|
35 |
+
|
36 |
+
factual_consistency_dataset = datasets.dataset_dict.DatasetDict()
|
37 |
+
factual_consistency_dataset["train"] = datasets.dataset_dict.Dataset.from_pandas(
|
38 |
+
df_train[["text", "label"]])
|
39 |
+
factual_consistency_dataset["test"] = datasets.dataset_dict.Dataset.from_pandas(
|
40 |
+
df_test[["text", "label"]])
|
41 |
+
|
42 |
+
return factual_consistency_dataset
|
43 |
+
|
44 |
+
|
45 |
+
class ConsistentSentenceClassifier(DistilBertForSequenceClassification):
|
46 |
+
|
47 |
+
def __init__(self, freeze_bert=True):
|
48 |
+
base_model = AutoModel.from_pretrained(
|
49 |
+
'line-corporation/line-distilbert-base-japanese', num_labels=3)
|
50 |
+
|
51 |
+
config = base_model.config
|
52 |
+
super(ConsistentSentenceClassifier, self).__init__(config=config)
|
53 |
+
config.num_labels = 3
|
54 |
+
config.id2label = ID2LABEL
|
55 |
+
config.label2id = LABEL2ID
|
56 |
+
config.problem_type = "single_label_classification"
|
57 |
+
|
58 |
+
self.distilbert = base_model
|
59 |
+
|
60 |
+
if not freeze_bert:
|
61 |
+
return
|
62 |
+
|
63 |
+
for param in self.distilbert.parameters():
|
64 |
+
param.requires_grad = False
|
65 |
+
|
66 |
+
def forward(
|
67 |
+
self,
|
68 |
+
input_ids: Optional[torch.Tensor] = None,
|
69 |
+
attention_mask: Optional[torch.Tensor] = None,
|
70 |
+
head_mask: Optional[torch.Tensor] = None,
|
71 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
72 |
+
labels: Optional[torch.LongTensor] = None,
|
73 |
+
output_attentions: Optional[bool] = None,
|
74 |
+
output_hidden_states: Optional[bool] = None,
|
75 |
+
return_dict: Optional[bool] = None,
|
76 |
+
):
|
77 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
78 |
+
|
79 |
+
distilbert_output = self.distilbert(
|
80 |
+
input_ids=input_ids,
|
81 |
+
attention_mask=attention_mask,
|
82 |
+
head_mask=head_mask,
|
83 |
+
inputs_embeds=inputs_embeds,
|
84 |
+
output_attentions=output_attentions,
|
85 |
+
output_hidden_states=output_hidden_states,
|
86 |
+
return_dict=return_dict,
|
87 |
+
)
|
88 |
+
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
|
89 |
+
pooled_output = torch.mean(hidden_state, dim=1)
|
90 |
+
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
|
91 |
+
pooled_output = torch.nn.ReLU()(pooled_output) # (bs, dim)
|
92 |
+
pooled_output = self.dropout(pooled_output) # (bs, dim)
|
93 |
+
logits = self.classifier(pooled_output) # (bs, num_labels)
|
94 |
+
|
95 |
+
loss = None
|
96 |
+
if labels is not None:
|
97 |
+
loss_fct = torch.nn.CrossEntropyLoss()
|
98 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
99 |
+
|
100 |
+
if not return_dict:
|
101 |
+
output = (logits,) + distilbert_output[1:]
|
102 |
+
return ((loss,) + output) if loss is not None else output
|
103 |
+
|
104 |
+
return SequenceClassifierOutput(
|
105 |
+
loss=loss,
|
106 |
+
logits=logits,
|
107 |
+
hidden_states=distilbert_output.hidden_states,
|
108 |
+
attentions=distilbert_output.attentions,
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
# Set up evaluation metridef get_metrics():
|
114 |
+
|
115 |
+
def get_metrics():
|
116 |
+
metric = evaluate.load("accuracy")
|
117 |
+
|
118 |
+
def compute_metrics(eval_pred):
|
119 |
+
predictions, labels = eval_pred
|
120 |
+
preds = predictions[0].argmax(axis=1)
|
121 |
+
return metric.compute(predictions=preds, references=labels)
|
122 |
+
|
123 |
+
return compute_metrics
|