File size: 3,276 Bytes
6558a89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
base_model: line-corporation/line-distilbert-base-japanese
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fc-binary-prompt-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fc-binary-prompt-model
This model is a fine-tuned version of [line-corporation/line-distilbert-base-japanese](https://huggingface.co/line-corporation/line-distilbert-base-japanese) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3462
- Accuracy: 0.8652
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- distributed_type: tpu
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 306 | 0.3968 | 0.8594 |
| 0.425 | 2.0 | 612 | 0.3885 | 0.8594 |
| 0.425 | 3.0 | 918 | 0.3809 | 0.8594 |
| 0.4028 | 4.0 | 1224 | 0.3771 | 0.8594 |
| 0.3962 | 5.0 | 1530 | 0.3717 | 0.8594 |
| 0.3962 | 6.0 | 1836 | 0.3704 | 0.8594 |
| 0.3919 | 7.0 | 2142 | 0.3708 | 0.8594 |
| 0.3919 | 8.0 | 2448 | 0.3648 | 0.8594 |
| 0.3897 | 9.0 | 2754 | 0.3759 | 0.8613 |
| 0.3836 | 10.0 | 3060 | 0.3570 | 0.8594 |
| 0.3836 | 11.0 | 3366 | 0.3643 | 0.8613 |
| 0.3864 | 12.0 | 3672 | 0.3559 | 0.8613 |
| 0.3864 | 13.0 | 3978 | 0.3557 | 0.8613 |
| 0.3823 | 14.0 | 4284 | 0.3516 | 0.8613 |
| 0.3808 | 15.0 | 4590 | 0.3580 | 0.8613 |
| 0.3808 | 16.0 | 4896 | 0.3529 | 0.8613 |
| 0.3759 | 17.0 | 5202 | 0.3498 | 0.8613 |
| 0.3793 | 18.0 | 5508 | 0.3485 | 0.8613 |
| 0.3793 | 19.0 | 5814 | 0.3495 | 0.8613 |
| 0.3757 | 20.0 | 6120 | 0.3442 | 0.8613 |
| 0.3757 | 21.0 | 6426 | 0.3481 | 0.8613 |
| 0.3741 | 22.0 | 6732 | 0.3475 | 0.8633 |
| 0.3775 | 23.0 | 7038 | 0.3478 | 0.8633 |
| 0.3775 | 24.0 | 7344 | 0.3486 | 0.8633 |
| 0.375 | 25.0 | 7650 | 0.3489 | 0.8652 |
| 0.375 | 26.0 | 7956 | 0.3485 | 0.8652 |
| 0.37 | 27.0 | 8262 | 0.3446 | 0.8613 |
| 0.3712 | 28.0 | 8568 | 0.3463 | 0.8652 |
| 0.3712 | 29.0 | 8874 | 0.3466 | 0.8652 |
| 0.3748 | 30.0 | 9180 | 0.3462 | 0.8652 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
|