File size: 3,276 Bytes
6558a89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
base_model: line-corporation/line-distilbert-base-japanese
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fc-binary-prompt-model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fc-binary-prompt-model

This model is a fine-tuned version of [line-corporation/line-distilbert-base-japanese](https://huggingface.co/line-corporation/line-distilbert-base-japanese) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3462
- Accuracy: 0.8652

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- distributed_type: tpu
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 306  | 0.3968          | 0.8594   |
| 0.425         | 2.0   | 612  | 0.3885          | 0.8594   |
| 0.425         | 3.0   | 918  | 0.3809          | 0.8594   |
| 0.4028        | 4.0   | 1224 | 0.3771          | 0.8594   |
| 0.3962        | 5.0   | 1530 | 0.3717          | 0.8594   |
| 0.3962        | 6.0   | 1836 | 0.3704          | 0.8594   |
| 0.3919        | 7.0   | 2142 | 0.3708          | 0.8594   |
| 0.3919        | 8.0   | 2448 | 0.3648          | 0.8594   |
| 0.3897        | 9.0   | 2754 | 0.3759          | 0.8613   |
| 0.3836        | 10.0  | 3060 | 0.3570          | 0.8594   |
| 0.3836        | 11.0  | 3366 | 0.3643          | 0.8613   |
| 0.3864        | 12.0  | 3672 | 0.3559          | 0.8613   |
| 0.3864        | 13.0  | 3978 | 0.3557          | 0.8613   |
| 0.3823        | 14.0  | 4284 | 0.3516          | 0.8613   |
| 0.3808        | 15.0  | 4590 | 0.3580          | 0.8613   |
| 0.3808        | 16.0  | 4896 | 0.3529          | 0.8613   |
| 0.3759        | 17.0  | 5202 | 0.3498          | 0.8613   |
| 0.3793        | 18.0  | 5508 | 0.3485          | 0.8613   |
| 0.3793        | 19.0  | 5814 | 0.3495          | 0.8613   |
| 0.3757        | 20.0  | 6120 | 0.3442          | 0.8613   |
| 0.3757        | 21.0  | 6426 | 0.3481          | 0.8613   |
| 0.3741        | 22.0  | 6732 | 0.3475          | 0.8633   |
| 0.3775        | 23.0  | 7038 | 0.3478          | 0.8633   |
| 0.3775        | 24.0  | 7344 | 0.3486          | 0.8633   |
| 0.375         | 25.0  | 7650 | 0.3489          | 0.8652   |
| 0.375         | 26.0  | 7956 | 0.3485          | 0.8652   |
| 0.37          | 27.0  | 8262 | 0.3446          | 0.8613   |
| 0.3712        | 28.0  | 8568 | 0.3463          | 0.8652   |
| 0.3712        | 29.0  | 8874 | 0.3466          | 0.8652   |
| 0.3748        | 30.0  | 9180 | 0.3462          | 0.8652   |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0