File size: 2,092 Bytes
6c59fa4 8ccea90 6c59fa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- wiki_lingua
metrics:
- rouge
model-index:
- name: wiki_lingua-hi-8-3-5.6e-05-mt5-small-finetuned
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wiki_lingua
type: wiki_lingua
config: hi
split: test
args: hi
metrics:
- name: Rouge1
type: rouge
value: 1.3405
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wiki_lingua-hi-8-3-5.6e-05-mt5-small-finetuned
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wiki_lingua dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4454
- Rouge1: 1.3405
- Rouge2: 0.3957
- Rougel: 1.3311
- Rougelsum: 1.3354
## Baseline Result
- Rouge1: 4.18
- Rouge2: 1.31
- Rougel: 4.08
- Rougelsum: 4.07
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 4.5276 | 1.0 | 841 | 2.5614 | 1.3305 | 0.3186 | 1.3393 | 1.345 |
| 3.0712 | 2.0 | 1682 | 2.4707 | 1.2656 | 0.2856 | 1.2595 | 1.2631 |
| 2.9584 | 3.0 | 2523 | 2.4454 | 1.3405 | 0.3957 | 1.3311 | 1.3354 |
### Framework versions
- Transformers 4.27.4
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2
|