File size: 2,111 Bytes
d93edeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9772e1
 
 
 
 
 
d93edeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- wiki_lingua
metrics:
- rouge
model-index:
- name: wiki_lingua-id-8-3-5.6e-05-mt5-small-finetuned
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: wiki_lingua
      type: wiki_lingua
      config: id
      split: test
      args: id
    metrics:
    - name: Rouge1
      type: rouge
      value: 18.0064
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wiki_lingua-id-8-3-5.6e-05-mt5-small-finetuned

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wiki_lingua dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3388
- Rouge1: 18.0064
- Rouge2: 5.5315
- Rougel: 16.1048
- Rougelsum: 17.6763

# Baseline LEAD-64
- Rouge1: 20.32
- Rouge2: 4.94
- Rougel: 14.0
- Rougelsum: 14.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 3.4701        | 1.0   | 4029  | 2.4403          | 17.0314 | 5.0932 | 15.3277 | 16.713    |
| 2.8067        | 2.0   | 8058  | 2.3568          | 17.6738 | 5.3508 | 15.8002 | 17.336    |
| 2.7095        | 3.0   | 12087 | 2.3388          | 18.0064 | 5.5315 | 16.1048 | 17.6763   |


### Framework versions

- Transformers 4.27.4
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2