VoiceConversionWebUI / vc_infer_pipeline.py
lj1995's picture
Upload 67 files
1c75048
raw
history blame
10.7 kB
import numpy as np,parselmouth,torch,pdb
from time import time as ttime
import torch.nn.functional as F
from config import x_pad,x_query,x_center,x_max
from sklearn.cluster import KMeans
def resize2d(x, target_len,is1):
minn=1 if is1==True else 0
ss = np.array(x).astype("float32")
ss[ss <=minn] = np.nan
target = np.interp(np.arange(0, len(ss) * target_len, len(ss)) / target_len, np.arange(0, len(ss)), ss)
res = np.nan_to_num(target)
return res
class VC(object):
def __init__(self,tgt_sr,device,is_half):
self.sr=16000#hubert输入采样率
self.window=160#每帧点数
self.t_pad=self.sr*x_pad#每条前后pad时间
self.t_pad_tgt=tgt_sr*x_pad
self.t_pad2=self.t_pad*2
self.t_query=self.sr*x_query#查询切点前后查询时间
self.t_center=self.sr*x_center#查询切点位置
self.t_max=self.sr*x_max#免查询时长阈值
self.device=device
self.is_half=is_half
def get_f0(self,x, p_len,f0_up_key=0,inp_f0=None):
time_step = self.window / self.sr * 1000
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0 = parselmouth.Sound(x, self.sr).to_pitch_ac(
time_step=time_step / 1000, voicing_threshold=0.6,
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
pad_size=(p_len - len(f0) + 1) // 2
if(pad_size>0 or p_len - len(f0) - pad_size>0):
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
f0 *= pow(2, f0_up_key / 12)
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
tf0=self.sr//self.window#每秒f0点数
if (inp_f0 is not None):
delta_t=np.round((inp_f0[:,0].max()-inp_f0[:,0].min())*tf0+1).astype("int16")
replace_f0=np.interp(list(range(delta_t)), inp_f0[:, 0]*100, inp_f0[:, 1])
shape=f0[x_pad*tf0:x_pad*tf0+len(replace_f0)].shape[0]
f0[x_pad*tf0:x_pad*tf0+len(replace_f0)]=replace_f0[:shape]
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
f0bak = f0.copy()
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = np.rint(f0_mel).astype(np.int)
return f0_coarse, f0bak#1-0
def vc(self,model,net_g,dv,audio0,pitch,pitchf,times):
feats = torch.from_numpy(audio0)
if(self.is_half==True):feats=feats.half()
else:feats=feats.float()
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.to(self.device),
"padding_mask": padding_mask.to(self.device),
"output_layer": 9, # layer 9
}
t0 = ttime()
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0])
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
t1 = ttime()
p_len = audio0.shape[0]//self.window
if(feats.shape[1]<p_len):
p_len=feats.shape[1]
pitch=pitch[:,:p_len]
pitchf=pitchf[:,:p_len]
p_len=torch.LongTensor([p_len]).to(self.device)
with torch.no_grad():
audio1 = (net_g.infer(feats, p_len, pitch, pitchf, dv)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
del feats,p_len,padding_mask
torch.cuda.empty_cache()
t2 = ttime()
times[0] += (t1 - t0)
times[2] += (t2 - t1)
return audio1
def vc_km(self,model,net_g,dv,audio0,pitch,pitchf,times):
kmeans = KMeans(500)
def get_cluster_result(x):
"""x: np.array [t, 256]"""
return kmeans.predict(x)
checkpoint = torch.load("lulu_contentvec_kmeans_500.pt")
kmeans.__dict__["n_features_in_"] = checkpoint["n_features_in_"]
kmeans.__dict__["_n_threads"] = checkpoint["_n_threads"]
kmeans.__dict__["cluster_centers_"] = checkpoint["cluster_centers_"]
feats = torch.from_numpy(audio0).float()
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.half().to(self.device),
"padding_mask": padding_mask.to(self.device),
"output_layer": 9, # layer 9
}
torch.cuda.synchronize()
t0 = ttime()
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0])
feats = get_cluster_result(feats.cpu().numpy()[0].astype("float32"))
feats = torch.from_numpy(feats).to(self.device)
feats = F.interpolate(feats.half().unsqueeze(0).unsqueeze(0), scale_factor=2).long().squeeze(0)
t1 = ttime()
p_len = audio0.shape[0]//self.window
if(feats.shape[1]<p_len):
p_len=feats.shape[1]
pitch=pitch[:,:p_len]
pitchf=pitchf[:,:p_len]
p_len=torch.LongTensor([p_len]).to(self.device)
with torch.no_grad():
audio1 = (net_g.infer(feats, p_len, pitch, pitchf, dv)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
del feats,p_len,padding_mask
torch.cuda.empty_cache()
t2 = ttime()
times[0] += (t1 - t0)
times[2] += (t2 - t1)
return audio1
def pipeline(self,model,net_g,dv,audio,times,f0_up_key,f0_file=None):
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect')
opt_ts = []
if(audio_pad.shape[0]>self.t_max):
audio_sum = np.zeros_like(audio)
for i in range(self.window): audio_sum += audio_pad[i:i - self.window]
for t in range(self.t_center, audio.shape[0],self.t_center):opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query:t + self.t_query]) == np.abs(audio_sum[t - self.t_query:t + self.t_query]).min())[0][0])
s = 0
audio_opt=[]
t=None
t1=ttime()
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect')
p_len=audio_pad.shape[0]//self.window
inp_f0=None
if(hasattr(f0_file,'name') ==True):
try:
with open(f0_file.name,"r")as f:
lines=f.read().strip("\n").split("\n")
inp_f0=[]
for line in lines:inp_f0.append([float(i)for i in line.split(",")])
inp_f0=np.array(inp_f0,dtype="float32")
except:
traceback.print_exc()
pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key,inp_f0)
pitch = pitch[:p_len]
pitchf = pitchf[:p_len]
# if(inp_f0 is None):
# pitch = pitch[:p_len]
# pitchf = pitchf[:p_len]
# else:
# pitch=resize2d(pitch,p_len,is1=True)
# pitchf=resize2d(pitchf,p_len,is1=False)
pitch = torch.LongTensor(pitch).unsqueeze(0).to(self.device)
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(self.device)
t2=ttime()
times[1] += (t2 - t1)
for t in opt_ts:
t=t//self.window*self.window
audio_opt.append(self.vc(model,net_g,dv,audio_pad[s:t+self.t_pad2+self.window],pitch[:,s//self.window:(t+self.t_pad2)//self.window],pitchf[:,s//self.window:(t+self.t_pad2)//self.window],times)[self.t_pad_tgt:-self.t_pad_tgt])
s = t
audio_opt.append(self.vc(model,net_g,dv,audio_pad[t:],pitch[:,t//self.window:]if t is not None else pitch,pitchf[:,t//self.window:]if t is not None else pitchf,times)[self.t_pad_tgt:-self.t_pad_tgt])
audio_opt=np.concatenate(audio_opt)
del pitch,pitchf
return audio_opt
def pipeline_km(self,model,net_g,dv,audio,times,f0_up_key,f0_file=None):
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect')
opt_ts = []
if(audio_pad.shape[0]>self.t_max):
audio_sum = np.zeros_like(audio)
for i in range(self.window): audio_sum += audio_pad[i:i - self.window]
for t in range(self.t_center, audio.shape[0],self.t_center):opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query:t + self.t_query]) == np.abs(audio_sum[t - self.t_query:t + self.t_query]).min())[0][0])
s = 0
audio_opt=[]
t=None
t1=ttime()
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect')
p_len=audio_pad.shape[0]//self.window
inp_f0=None
if(hasattr(f0_file,'name') ==True):
try:
with open(f0_file.name,"r")as f:
lines=f.read().strip("\n").split("\n")
inp_f0=[]
for line in lines:inp_f0.append([float(i)for i in line.split(",")])
inp_f0=np.array(inp_f0,dtype="float32")
except:
traceback.print_exc()
pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key,inp_f0)
pitch = pitch[:p_len]
pitchf = pitchf[:p_len]
# if(inp_f0 is None):
# pitch = pitch[:p_len]
# pitchf = pitchf[:p_len]
# else:
# pitch=resize2d(pitch,p_len,is1=True)
# pitchf=resize2d(pitchf,p_len,is1=False)
pitch = torch.LongTensor(pitch).unsqueeze(0).to(self.device)
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(self.device)
t2=ttime()
times[1] += (t2 - t1)
for t in opt_ts:
t=t//self.window*self.window
audio_opt.append(self.vc_km(model,net_g,dv,audio_pad[s:t+self.t_pad2+self.window],pitch[:,s//self.window:(t+self.t_pad2)//self.window],pitchf[:,s//self.window:(t+self.t_pad2)//self.window],times)[self.t_pad_tgt:-self.t_pad_tgt])
s = t
audio_opt.append(self.vc_km(model,net_g,dv,audio_pad[t:],pitch[:,t//self.window:]if t is not None else pitch,pitchf[:,t//self.window:]if t is not None else pitchf,times)[self.t_pad_tgt:-self.t_pad_tgt])
audio_opt=np.concatenate(audio_opt)
del pitch,pitchf
return audio_opt