|
import numpy as np,parselmouth,torch,pdb |
|
from time import time as ttime |
|
import torch.nn.functional as F |
|
from config import x_pad,x_query,x_center,x_max |
|
from sklearn.cluster import KMeans |
|
|
|
def resize2d(x, target_len,is1): |
|
minn=1 if is1==True else 0 |
|
ss = np.array(x).astype("float32") |
|
ss[ss <=minn] = np.nan |
|
target = np.interp(np.arange(0, len(ss) * target_len, len(ss)) / target_len, np.arange(0, len(ss)), ss) |
|
res = np.nan_to_num(target) |
|
return res |
|
|
|
class VC(object): |
|
def __init__(self,tgt_sr,device,is_half): |
|
self.sr=16000 |
|
self.window=160 |
|
self.t_pad=self.sr*x_pad |
|
self.t_pad_tgt=tgt_sr*x_pad |
|
self.t_pad2=self.t_pad*2 |
|
self.t_query=self.sr*x_query |
|
self.t_center=self.sr*x_center |
|
self.t_max=self.sr*x_max |
|
self.device=device |
|
self.is_half=is_half |
|
|
|
def get_f0(self,x, p_len,f0_up_key=0,inp_f0=None): |
|
time_step = self.window / self.sr * 1000 |
|
f0_min = 50 |
|
f0_max = 1100 |
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700) |
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700) |
|
f0 = parselmouth.Sound(x, self.sr).to_pitch_ac( |
|
time_step=time_step / 1000, voicing_threshold=0.6, |
|
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] |
|
pad_size=(p_len - len(f0) + 1) // 2 |
|
if(pad_size>0 or p_len - len(f0) - pad_size>0): |
|
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant') |
|
f0 *= pow(2, f0_up_key / 12) |
|
|
|
tf0=self.sr//self.window |
|
if (inp_f0 is not None): |
|
delta_t=np.round((inp_f0[:,0].max()-inp_f0[:,0].min())*tf0+1).astype("int16") |
|
replace_f0=np.interp(list(range(delta_t)), inp_f0[:, 0]*100, inp_f0[:, 1]) |
|
shape=f0[x_pad*tf0:x_pad*tf0+len(replace_f0)].shape[0] |
|
f0[x_pad*tf0:x_pad*tf0+len(replace_f0)]=replace_f0[:shape] |
|
|
|
f0bak = f0.copy() |
|
f0_mel = 1127 * np.log(1 + f0 / 700) |
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1 |
|
f0_mel[f0_mel <= 1] = 1 |
|
f0_mel[f0_mel > 255] = 255 |
|
f0_coarse = np.rint(f0_mel).astype(np.int) |
|
return f0_coarse, f0bak |
|
|
|
def vc(self,model,net_g,dv,audio0,pitch,pitchf,times): |
|
feats = torch.from_numpy(audio0) |
|
if(self.is_half==True):feats=feats.half() |
|
else:feats=feats.float() |
|
if feats.dim() == 2: |
|
feats = feats.mean(-1) |
|
assert feats.dim() == 1, feats.dim() |
|
feats = feats.view(1, -1) |
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False) |
|
|
|
inputs = { |
|
"source": feats.to(self.device), |
|
"padding_mask": padding_mask.to(self.device), |
|
"output_layer": 9, |
|
} |
|
t0 = ttime() |
|
with torch.no_grad(): |
|
logits = model.extract_features(**inputs) |
|
feats = model.final_proj(logits[0]) |
|
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) |
|
t1 = ttime() |
|
p_len = audio0.shape[0]//self.window |
|
if(feats.shape[1]<p_len): |
|
p_len=feats.shape[1] |
|
pitch=pitch[:,:p_len] |
|
pitchf=pitchf[:,:p_len] |
|
p_len=torch.LongTensor([p_len]).to(self.device) |
|
with torch.no_grad(): |
|
audio1 = (net_g.infer(feats, p_len, pitch, pitchf, dv)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16) |
|
del feats,p_len,padding_mask |
|
torch.cuda.empty_cache() |
|
t2 = ttime() |
|
times[0] += (t1 - t0) |
|
times[2] += (t2 - t1) |
|
return audio1 |
|
def vc_km(self,model,net_g,dv,audio0,pitch,pitchf,times): |
|
kmeans = KMeans(500) |
|
def get_cluster_result(x): |
|
"""x: np.array [t, 256]""" |
|
return kmeans.predict(x) |
|
checkpoint = torch.load("lulu_contentvec_kmeans_500.pt") |
|
kmeans.__dict__["n_features_in_"] = checkpoint["n_features_in_"] |
|
kmeans.__dict__["_n_threads"] = checkpoint["_n_threads"] |
|
kmeans.__dict__["cluster_centers_"] = checkpoint["cluster_centers_"] |
|
feats = torch.from_numpy(audio0).float() |
|
if feats.dim() == 2: |
|
feats = feats.mean(-1) |
|
assert feats.dim() == 1, feats.dim() |
|
feats = feats.view(1, -1) |
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False) |
|
inputs = { |
|
"source": feats.half().to(self.device), |
|
"padding_mask": padding_mask.to(self.device), |
|
"output_layer": 9, |
|
} |
|
torch.cuda.synchronize() |
|
t0 = ttime() |
|
with torch.no_grad(): |
|
logits = model.extract_features(**inputs) |
|
feats = model.final_proj(logits[0]) |
|
feats = get_cluster_result(feats.cpu().numpy()[0].astype("float32")) |
|
feats = torch.from_numpy(feats).to(self.device) |
|
feats = F.interpolate(feats.half().unsqueeze(0).unsqueeze(0), scale_factor=2).long().squeeze(0) |
|
t1 = ttime() |
|
p_len = audio0.shape[0]//self.window |
|
if(feats.shape[1]<p_len): |
|
p_len=feats.shape[1] |
|
pitch=pitch[:,:p_len] |
|
pitchf=pitchf[:,:p_len] |
|
p_len=torch.LongTensor([p_len]).to(self.device) |
|
with torch.no_grad(): |
|
audio1 = (net_g.infer(feats, p_len, pitch, pitchf, dv)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16) |
|
del feats,p_len,padding_mask |
|
torch.cuda.empty_cache() |
|
t2 = ttime() |
|
times[0] += (t1 - t0) |
|
times[2] += (t2 - t1) |
|
return audio1 |
|
|
|
def pipeline(self,model,net_g,dv,audio,times,f0_up_key,f0_file=None): |
|
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect') |
|
opt_ts = [] |
|
if(audio_pad.shape[0]>self.t_max): |
|
audio_sum = np.zeros_like(audio) |
|
for i in range(self.window): audio_sum += audio_pad[i:i - self.window] |
|
for t in range(self.t_center, audio.shape[0],self.t_center):opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query:t + self.t_query]) == np.abs(audio_sum[t - self.t_query:t + self.t_query]).min())[0][0]) |
|
s = 0 |
|
audio_opt=[] |
|
t=None |
|
t1=ttime() |
|
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect') |
|
p_len=audio_pad.shape[0]//self.window |
|
inp_f0=None |
|
if(hasattr(f0_file,'name') ==True): |
|
try: |
|
with open(f0_file.name,"r")as f: |
|
lines=f.read().strip("\n").split("\n") |
|
inp_f0=[] |
|
for line in lines:inp_f0.append([float(i)for i in line.split(",")]) |
|
inp_f0=np.array(inp_f0,dtype="float32") |
|
except: |
|
traceback.print_exc() |
|
pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key,inp_f0) |
|
|
|
pitch = pitch[:p_len] |
|
pitchf = pitchf[:p_len] |
|
|
|
|
|
|
|
|
|
|
|
|
|
pitch = torch.LongTensor(pitch).unsqueeze(0).to(self.device) |
|
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(self.device) |
|
t2=ttime() |
|
times[1] += (t2 - t1) |
|
for t in opt_ts: |
|
t=t//self.window*self.window |
|
audio_opt.append(self.vc(model,net_g,dv,audio_pad[s:t+self.t_pad2+self.window],pitch[:,s//self.window:(t+self.t_pad2)//self.window],pitchf[:,s//self.window:(t+self.t_pad2)//self.window],times)[self.t_pad_tgt:-self.t_pad_tgt]) |
|
s = t |
|
audio_opt.append(self.vc(model,net_g,dv,audio_pad[t:],pitch[:,t//self.window:]if t is not None else pitch,pitchf[:,t//self.window:]if t is not None else pitchf,times)[self.t_pad_tgt:-self.t_pad_tgt]) |
|
audio_opt=np.concatenate(audio_opt) |
|
del pitch,pitchf |
|
return audio_opt |
|
def pipeline_km(self,model,net_g,dv,audio,times,f0_up_key,f0_file=None): |
|
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect') |
|
opt_ts = [] |
|
if(audio_pad.shape[0]>self.t_max): |
|
audio_sum = np.zeros_like(audio) |
|
for i in range(self.window): audio_sum += audio_pad[i:i - self.window] |
|
for t in range(self.t_center, audio.shape[0],self.t_center):opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query:t + self.t_query]) == np.abs(audio_sum[t - self.t_query:t + self.t_query]).min())[0][0]) |
|
s = 0 |
|
audio_opt=[] |
|
t=None |
|
t1=ttime() |
|
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect') |
|
p_len=audio_pad.shape[0]//self.window |
|
inp_f0=None |
|
if(hasattr(f0_file,'name') ==True): |
|
try: |
|
with open(f0_file.name,"r")as f: |
|
lines=f.read().strip("\n").split("\n") |
|
inp_f0=[] |
|
for line in lines:inp_f0.append([float(i)for i in line.split(",")]) |
|
inp_f0=np.array(inp_f0,dtype="float32") |
|
except: |
|
traceback.print_exc() |
|
pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key,inp_f0) |
|
|
|
pitch = pitch[:p_len] |
|
pitchf = pitchf[:p_len] |
|
|
|
|
|
|
|
|
|
|
|
|
|
pitch = torch.LongTensor(pitch).unsqueeze(0).to(self.device) |
|
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(self.device) |
|
t2=ttime() |
|
times[1] += (t2 - t1) |
|
for t in opt_ts: |
|
t=t//self.window*self.window |
|
audio_opt.append(self.vc_km(model,net_g,dv,audio_pad[s:t+self.t_pad2+self.window],pitch[:,s//self.window:(t+self.t_pad2)//self.window],pitchf[:,s//self.window:(t+self.t_pad2)//self.window],times)[self.t_pad_tgt:-self.t_pad_tgt]) |
|
s = t |
|
audio_opt.append(self.vc_km(model,net_g,dv,audio_pad[t:],pitch[:,t//self.window:]if t is not None else pitch,pitchf[:,t//self.window:]if t is not None else pitchf,times)[self.t_pad_tgt:-self.t_pad_tgt]) |
|
audio_opt=np.concatenate(audio_opt) |
|
del pitch,pitchf |
|
return audio_opt |
|
|