import os,sys,torch,warnings,pdb warnings.filterwarnings("ignore") import librosa import importlib import numpy as np import hashlib , math from tqdm import tqdm from uvr5_pack.lib_v5 import spec_utils from uvr5_pack.utils import _get_name_params,inference from uvr5_pack.lib_v5.model_param_init import ModelParameters from scipy.io import wavfile class _audio_pre_(): def __init__(self, model_path,device,is_half): self.model_path = model_path self.device = device self.data = { # Processing Options 'postprocess': False, 'tta': False, # Constants 'window_size': 512, 'agg': 10, 'high_end_process': 'mirroring', } nn_arch_sizes = [ 31191, # default 33966,61968, 123821, 123812, 537238 # custom ] self.nn_architecture = list('{}KB'.format(s) for s in nn_arch_sizes) model_size = math.ceil(os.stat(model_path ).st_size / 1024) nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size))) nets = importlib.import_module('uvr5_pack.lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None) model_hash = hashlib.md5(open(model_path,'rb').read()).hexdigest() param_name ,model_params_d = _get_name_params(model_path , model_hash) mp = ModelParameters(model_params_d) model = nets.CascadedASPPNet(mp.param['bins'] * 2) cpk = torch.load( model_path , map_location='cpu') model.load_state_dict(cpk) model.eval() if(is_half==True):model = model.half().to(device) else:model = model.to(device) self.mp = mp self.model = model def _path_audio_(self, music_file ,ins_root=None,vocal_root=None): if(ins_root is None and vocal_root is None):return "No save root." name=os.path.basename(music_file) if(ins_root is not None):os.makedirs(ins_root, exist_ok=True) if(vocal_root is not None):os.makedirs(vocal_root , exist_ok=True) X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {} bands_n = len(self.mp.param['band']) # print(bands_n) for d in range(bands_n, 0, -1): bp = self.mp.param['band'][d] if d == bands_n: # high-end band X_wave[d], _ = librosa.core.load( music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type']) if X_wave[d].ndim == 1: X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]]) else: # lower bands X_wave[d] = librosa.core.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type']) # Stft of wave source X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], self.mp.param['mid_side'], self.mp.param['mid_side_b2'], self.mp.param['reverse']) # pdb.set_trace() if d == bands_n and self.data['high_end_process'] != 'none': input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + ( self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start']) input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :] X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp) aggresive_set = float(self.data['agg']/100) aggressiveness = {'value': aggresive_set, 'split_bin': self.mp.param['band'][1]['crop_stop']} with torch.no_grad(): pred, X_mag, X_phase = inference(X_spec_m,self.device,self.model, aggressiveness,self.data) # Postprocess if self.data['postprocess']: pred_inv = np.clip(X_mag - pred, 0, np.inf) pred = spec_utils.mask_silence(pred, pred_inv) y_spec_m = pred * X_phase v_spec_m = X_spec_m - y_spec_m if (ins_root is not None): if self.data['high_end_process'].startswith('mirroring'): input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], y_spec_m, input_high_end, self.mp) wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp,input_high_end_h, input_high_end_) else: wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp) print ('%s instruments done'%name) wavfile.write(os.path.join(ins_root, 'instrument_{}.wav'.format(name) ), self.mp.param['sr'], (np.array(wav_instrument)*32768).astype("int16")) # if (vocal_root is not None): if self.data['high_end_process'].startswith('mirroring'): input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], v_spec_m, input_high_end, self.mp) wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp, input_high_end_h, input_high_end_) else: wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp) print ('%s vocals done'%name) wavfile.write(os.path.join(vocal_root , 'vocal_{}.wav'.format(name) ), self.mp.param['sr'], (np.array(wav_vocals)*32768).astype("int16")) if __name__ == '__main__': device = 'cuda' is_half=True model_path='uvr5_weights/2_HP-UVR.pth' pre_fun = _audio_pre_(model_path=model_path,device=device,is_half=True) audio_path = '神女劈观.aac' save_path = 'opt' pre_fun._path_audio_(audio_path , save_path,save_path)