import torch, pdb, os,traceback,sys,warnings,shutil now_dir=os.getcwd() sys.path.append(now_dir) tmp=os.path.join(now_dir,"TEMP") shutil.rmtree(tmp,ignore_errors=True) os.makedirs(tmp,exist_ok=True) os.environ["TEMP"]=tmp warnings.filterwarnings("ignore") torch.manual_seed(114514) from infer_pack.models import SynthesizerTrnMs256NSF as SynthesizerTrn256 from scipy.io import wavfile from fairseq import checkpoint_utils import gradio as gr import librosa import logging from vc_infer_pipeline import VC import soundfile as sf from config import is_half,device,is_half from infer_uvr5 import _audio_pre_ logging.getLogger('numba').setLevel(logging.WARNING) models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"],suffix="",) hubert_model = models[0] hubert_model = hubert_model.to(device) if(is_half):hubert_model = hubert_model.half() else:hubert_model = hubert_model.float() hubert_model.eval() weight_root="weights" weight_uvr5_root="uvr5_weights" names=[] for name in os.listdir(weight_root):names.append(name.replace(".pt","")) uvr5_names=[] for name in os.listdir(weight_uvr5_root):uvr5_names.append(name.replace(".pth","")) def get_vc(sid): person = "%s/%s.pt" % (weight_root, sid) cpt = torch.load(person, map_location="cpu") dv = cpt["dv"] tgt_sr = cpt["config"][-1] net_g = SynthesizerTrn256(*cpt["config"], is_half=is_half) net_g.load_state_dict(cpt["weight"], strict=True) net_g.eval().to(device) if (is_half):net_g = net_g.half() else:net_g = net_g.float() vc = VC(tgt_sr, device, is_half) return dv,tgt_sr,net_g,vc def vc_single(sid,input_audio,f0_up_key,f0_file): if input_audio is None:return "You need to upload an audio", None f0_up_key = int(f0_up_key) try: if(type(input_audio)==str): print("processing %s" % input_audio) audio, sampling_rate = sf.read(input_audio) else: sampling_rate, audio = input_audio audio = audio.astype("float32") / 32768 if(type(sid)==str):dv, tgt_sr, net_g, vc=get_vc(sid) else:dv,tgt_sr,net_g,vc=sid if len(audio.shape) > 1: audio = librosa.to_mono(audio.transpose(1, 0)) if sampling_rate != 16000: audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) times = [0, 0, 0] audio_opt=vc.pipeline(hubert_model,net_g,dv,audio,times,f0_up_key,f0_file=f0_file) print(times) return "Success", (tgt_sr, audio_opt) except: info=traceback.format_exc() print(info) return info,(None,None) finally: print("clean_empty_cache") del net_g,dv,vc torch.cuda.empty_cache() def vc_multi(sid,dir_path,opt_root,paths,f0_up_key): try: dir_path=dir_path.strip(" ")#防止小白拷路径头尾带了空格 opt_root=opt_root.strip(" ") os.makedirs(opt_root, exist_ok=True) dv, tgt_sr, net_g, vc = get_vc(sid) try: if(dir_path!=""):paths=[os.path.join(dir_path,name)for name in os.listdir(dir_path)] else:paths=[path.name for path in paths] except: traceback.print_exc() paths = [path.name for path in paths] infos=[] for path in paths: info,opt=vc_single([dv,tgt_sr,net_g,vc],path,f0_up_key,f0_file=None) if(info=="Success"): try: tgt_sr,audio_opt=opt wavfile.write("%s/%s" % (opt_root, os.path.basename(path)), tgt_sr, audio_opt) except: info=traceback.format_exc() infos.append("%s->%s"%(os.path.basename(path),info)) return "\n".join(infos) except: return traceback.format_exc() finally: print("clean_empty_cache") del net_g,dv,vc torch.cuda.empty_cache() def uvr(model_name,inp_root,save_root_vocal,save_root_ins): infos = [] try: inp_root = inp_root.strip(" ")# 防止小白拷路径头尾带了空格 save_root_vocal = save_root_vocal.strip(" ") save_root_ins = save_root_ins.strip(" ") pre_fun = _audio_pre_(model_path=os.path.join(weight_uvr5_root,model_name+".pth"), device=device, is_half=is_half) for name in os.listdir(inp_root): inp_path=os.path.join(inp_root,name) try: pre_fun._path_audio_(inp_path , save_root_ins,save_root_vocal) infos.append("%s->Success"%(os.path.basename(inp_path))) except: infos.append("%s->%s" % (os.path.basename(inp_path),traceback.format_exc())) except: infos.append(traceback.format_exc()) finally: try: del pre_fun.model del pre_fun except: traceback.print_exc() print("clean_empty_cache") torch.cuda.empty_cache() return "\n".join(infos) with gr.Blocks() as app: with gr.Tabs(): with gr.TabItem("推理"): with gr.Group(): gr.Markdown(value=""" 使用软件者、传播软件导出的声音者自负全责。如不认可该条款,则不能使用/引用软件包内所有代码和文件。
目前仅开放白菜音色,后续将扩展为本地训练推理工具,用户可训练自己的音色进行社区共享。
男转女推荐+12key,女转男推荐-12key,如果音域爆炸导致音色失真也可以自己调整到合适音域 """) with gr.Row(): with gr.Column(): sid0 = gr.Dropdown(label="音色", choices=names) vc_transform0 = gr.Number(label="变调(整数,半音数量,升八度12降八度-12)", value=12) f0_file = gr.File(label="F0曲线文件,可选,一行一个音高,代替默认F0及升降调") input_audio0 = gr.Audio(label="上传音频") but0=gr.Button("转换", variant="primary") with gr.Column(): vc_output1 = gr.Textbox(label="输出信息") vc_output2 = gr.Audio(label="输出音频") but0.click(vc_single, [sid0, input_audio0, vc_transform0,f0_file], [vc_output1, vc_output2]) with gr.Group(): gr.Markdown(value=""" 批量转换,上传多个音频文件,在指定文件夹(默认opt)下输出转换的音频。
合格的文件夹路径格式举例:E:\codes\py39\\vits_vc_gpu\白鹭霜华测试样例(去文件管理器地址栏拷就行了) """) with gr.Row(): with gr.Column(): sid1 = gr.Dropdown(label="音色", choices=names) vc_transform1 = gr.Number(label="变调(整数,半音数量,升八度12降八度-12)", value=12) opt_input = gr.Textbox(label="指定输出文件夹",value="opt") with gr.Column(): dir_input = gr.Textbox(label="输入待处理音频文件夹路径") inputs = gr.File(file_count="multiple", label="也可批量输入音频文件,二选一,优先读文件夹") but1=gr.Button("转换", variant="primary") vc_output3 = gr.Textbox(label="输出信息") but1.click(vc_multi, [sid1, dir_input,opt_input,inputs, vc_transform1], [vc_output3]) with gr.TabItem("数据处理"): with gr.Group(): gr.Markdown(value=""" 人声伴奏分离批量处理,使用UVR5模型。
不带和声用HP2,带和声且提取的人声不需要和声用HP5
合格的文件夹路径格式举例:E:\codes\py39\\vits_vc_gpu\白鹭霜华测试样例(去文件管理器地址栏拷就行了) """) with gr.Row(): with gr.Column(): dir_wav_input = gr.Textbox(label="输入待处理音频文件夹路径") wav_inputs = gr.File(file_count="multiple", label="也可批量输入音频文件,二选一,优先读文件夹") with gr.Column(): model_choose = gr.Dropdown(label="模型", choices=uvr5_names) opt_vocal_root = gr.Textbox(label="指定输出人声文件夹",value="opt") opt_ins_root = gr.Textbox(label="指定输出乐器文件夹",value="opt") but2=gr.Button("转换", variant="primary") vc_output4 = gr.Textbox(label="输出信息") but2.click(uvr, [model_choose, dir_wav_input,opt_vocal_root,opt_ins_root], [vc_output4]) with gr.TabItem("训练-待开放"):pass # app.launch(server_name="0.0.0.0",server_port=7860) app.launch(server_name="127.0.0.1",server_port=7860)