import torch from diffusers import DiffusionPipeline import torch.nn.functional as F import numpy as np class FOREcasTPipeline(DiffusionPipeline): def __init__(self, FOREcasT_model, MAX_DEL_SIZE): super().__init__() self.register_modules(FOREcasT_model=FOREcasT_model) self.MAX_DEL_SIZE = MAX_DEL_SIZE self.lefts = np.concatenate([ np.arange(-DEL_SIZE, 1) for DEL_SIZE in range(self.MAX_DEL_SIZE, -1, -1) ] + [np.zeros(20, np.int64)]) self.rights = np.concatenate([ np.arange(0, DEL_SIZE + 1) for DEL_SIZE in range(self.MAX_DEL_SIZE, -1, -1) ] + [np.zeros(20, np.int64)]) self.inss = (self.MAX_DEL_SIZE + 2) * (self.MAX_DEL_SIZE + 1) // 2 * [""] + ["A", "C", "G", "T", "AA", "AC", "AG", "AT", "CA", "CC", "CG", "CT", "GA", "GC", "GG", "GT", "TA", "TC", "TG", "TT"] @torch.no_grad() def __call__(self, batch): assert batch["feature"].shape[1] == len(self.lefts), "the possible mutation number of the input feature does not fit the pipeline" return { "proba": F.softmax(self.FOREcasT_model(batch["feature"].to(self.FOREcasT_model.device))["logit"], dim=-1), "left": self.lefts, "right": self.rights, "ins_seq": self.inss }