--- library_name: transformers tags: - generated_from_trainer datasets: - crispr_data model-index: - name: SX_spcas9_FOREcasT results: [] --- # SX_spcas9_FOREcasT This model is a fine-tuned version of [](https://huggingface.co/) on the crispr_data dataset. It achieves the following results on the evaluation set: - Loss: 90.0301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 100 - eval_batch_size: 100 - seed: 63036 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 30.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5299.9422 | 1.0 | 322 | 4486.6816 | | 3409.13 | 2.0 | 644 | 2367.0308 | | 1740.73 | 3.0 | 966 | 1208.4238 | | 886.9884 | 4.0 | 1288 | 619.2037 | | 463.7353 | 5.0 | 1610 | 335.7322 | | 264.2752 | 6.0 | 1932 | 205.3073 | | 173.0323 | 7.0 | 2254 | 145.6962 | | 131.4609 | 8.0 | 2576 | 117.9419 | | 111.7286 | 9.0 | 2898 | 104.6322 | | 102.0464 | 10.0 | 3220 | 97.9003 | | 97.07 | 11.0 | 3542 | 94.3013 | | 94.5021 | 12.0 | 3864 | 92.5289 | | 93.0652 | 13.0 | 4186 | 91.5912 | | 92.3189 | 14.0 | 4508 | 91.0249 | | 91.8618 | 15.0 | 4830 | 90.6213 | | 91.6092 | 16.0 | 5152 | 90.4249 | | 91.4372 | 17.0 | 5474 | 90.2542 | | 91.3401 | 18.0 | 5796 | 90.2745 | | 91.2793 | 19.0 | 6118 | 90.1836 | | 91.2196 | 20.0 | 6440 | 90.1465 | | 91.1831 | 21.0 | 6762 | 90.0652 | | 91.1484 | 22.0 | 7084 | 90.1792 | | 91.1333 | 23.0 | 7406 | 90.0813 | | 91.1064 | 24.0 | 7728 | 90.1987 | | 91.09 | 25.0 | 8050 | 90.0518 | | 91.0658 | 26.0 | 8372 | 90.0653 | | 91.0503 | 27.0 | 8694 | 90.0538 | | 91.0277 | 28.0 | 9016 | 90.0120 | | 91.013 | 29.0 | 9338 | 90.0356 | | 90.9967 | 30.0 | 9660 | 90.0301 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1