File size: 2,095 Bytes
ad9efa8 1a642cc ad9efa8 1a642cc ad9efa8 1a642cc ad9efa8 7ef99e8 ad9efa8 7ef99e8 ad9efa8 7ef99e8 ad9efa8 7ef99e8 ad9efa8 7ef99e8 ad9efa8 7ef99e8 ad9efa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: gemma
library_name: peft
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- llama-duo/synth_summarize_dataset_dedup
model-index:
- name: gemma2b-summarize-gemini1_5flash-128k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma2b-summarize-gemini1_5flash-128k
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the llama-duo/synth_summarize_dataset_dedup dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5573
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0978 | 1.0 | 104 | 2.4831 |
| 0.9985 | 2.0 | 208 | 2.4666 |
| 0.9543 | 3.0 | 312 | 2.4561 |
| 0.92 | 4.0 | 416 | 2.4799 |
| 0.9016 | 5.0 | 520 | 2.4990 |
| 0.8871 | 6.0 | 624 | 2.5250 |
| 0.8635 | 7.0 | 728 | 2.5363 |
| 0.8535 | 8.0 | 832 | 2.5546 |
| 0.845 | 9.0 | 936 | 2.5566 |
| 0.853 | 10.0 | 1040 | 2.5573 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1 |