--- base_model: meta-llama/Meta-Llama-3.1-8B datasets: - llama-duo/synth_coding_dataset_dedup library_name: peft license: llama3.1 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: llama3.1-8b-coding-gpt4o-100k results: [] --- # llama3.1-8b-coding-gpt4o-100k This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the llama-duo/synth_coding_dataset_dedup dataset. It achieves the following results on the evaluation set: - Loss: 1.3444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.741 | 1.0 | 525 | 1.3567 | | 0.7109 | 2.0 | 1050 | 1.3158 | | 0.7026 | 3.0 | 1575 | 1.3116 | | 0.6682 | 4.0 | 2100 | 1.3090 | | 0.6825 | 5.0 | 2625 | 1.3126 | | 0.6429 | 6.0 | 3150 | 1.3228 | | 0.6334 | 7.0 | 3675 | 1.3276 | | 0.6257 | 8.0 | 4200 | 1.3404 | | 0.6314 | 9.0 | 4725 | 1.3410 | | 0.6205 | 10.0 | 5250 | 1.3444 | ### Framework versions - PEFT 0.12.0 - Transformers 4.43.4 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1