File size: 2,137 Bytes
d687c01 63ad71a d687c01 63ad71a d687c01 63ad71a d687c01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
base_model: mistralai/Mistral-7B-v0.3
datasets:
- llama-duo/synth_summarize_dataset_dedup
library_name: peft
license: apache-2.0
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: mistral_7b_0_3-summarize-gpt4o-128k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral_7b_0_3-summarize-gpt4o-128k
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on the llama-duo/synth_summarize_dataset_dedup dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0012
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6982 | 0.9980 | 245 | 1.8248 |
| 0.6596 | 2.0 | 491 | 1.8338 |
| 0.6197 | 2.9980 | 736 | 1.8432 |
| 0.6011 | 4.0 | 982 | 1.8707 |
| 0.5805 | 4.9980 | 1227 | 1.9009 |
| 0.5585 | 6.0 | 1473 | 1.9298 |
| 0.5413 | 6.9980 | 1718 | 1.9540 |
| 0.5295 | 8.0 | 1964 | 1.9814 |
| 0.5154 | 8.9980 | 2209 | 1.9979 |
| 0.508 | 9.9796 | 2450 | 2.0012 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.2.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |