--- base_model: mistralai/Mistral-7B-v0.3 datasets: - llama-duo/synth_summarize_dataset_dedup library_name: peft license: apache-2.0 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: mistral_7b_0_3-summarize-gpt4o-128k results: [] --- # mistral_7b_0_3-summarize-gpt4o-128k This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on the llama-duo/synth_summarize_dataset_dedup dataset. It achieves the following results on the evaluation set: - Loss: 2.0012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6982 | 0.9980 | 245 | 1.8248 | | 0.6596 | 2.0 | 491 | 1.8338 | | 0.6197 | 2.9980 | 736 | 1.8432 | | 0.6011 | 4.0 | 982 | 1.8707 | | 0.5805 | 4.9980 | 1227 | 1.9009 | | 0.5585 | 6.0 | 1473 | 1.9298 | | 0.5413 | 6.9980 | 1718 | 1.9540 | | 0.5295 | 8.0 | 1964 | 1.9814 | | 0.5154 | 8.9980 | 2209 | 1.9979 | | 0.508 | 9.9796 | 2450 | 2.0012 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.2.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1