File size: 66,589 Bytes
c1ac78d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 |
import math
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
import torch.utils.checkpoint
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions.normal import Normal
from transformers.modeling_outputs import (
CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.utils import ModelOutput, logging
from .configuration_llama_moe import LlamaMoEConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LlamaMoEConfig"
@dataclass
class CalculatorOutput(ModelOutput):
hidden_states: Optional[torch.FloatTensor] = None
num_dropped_tokens: Optional[int] = None
@dataclass
class BaseMoEModelOutputWithPast(ModelOutput):
"""
Args:
num_dropped_tokens: layer idx to the number of dropped tokens
"""
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
balance_loss: Optional[float] = None
num_dropped_tokens: Optional[Tuple[torch.Tensor]] = None
gate_load: Optional[Tuple[list]] = None
gate_importance: Optional[Tuple[list]] = None
@dataclass
class MoECausalLMOutputWithPast(CausalLMOutputWithPast):
balance_loss: Optional[float] = None
num_dropped_tokens: Optional[Tuple[int]] = None
gate_load: Optional[Tuple[list[torch.Tensor]]] = None
gate_importance: Optional[Tuple[list[torch.Tensor]]] = None
@dataclass
class MoEMlpOutput(ModelOutput):
hidden_states: Optional[torch.FloatTensor] = None
balance_loss: Optional[torch.FloatTensor] = None
num_dropped_tokens: Optional[int] = None
gate_load: Optional[list] = None
gate_importance: Optional[list] = None
def _make_causal_mask(
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
class LlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
LlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class LlamaRotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
t = t / self.scaling_factor
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class LlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.pretraining_tp = config.pretraining_tp
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
if self.pretraining_tp > 1:
slice = self.intermediate_size // self.pretraining_tp
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
down_proj = [F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp)]
down_proj = sum(down_proj)
else:
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class LlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: LlamaMoEConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.pretraining_tp = config.pretraining_tp
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self._init_rope()
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
)
elif scaling_type == "dynamic":
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
if self.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class TopKBalancedNoisyGate(nn.Module):
def __init__(
self,
input_size,
num_experts,
num_selects,
gate_network="mlp",
use_softmax=True,
use_balance=True,
balance_loss_weight=1e-2,
add_noise=True,
noise_epsilon=1e-2,
):
super(TopKBalancedNoisyGate, self).__init__()
assert num_selects <= num_experts
self.input_size = input_size
self.num_experts = num_experts
self.num_selects = num_selects
self.gate_network_type = gate_network
self.gate_network = self.get_gate_network(gate_network, input_size, num_experts)
self.use_softmax = use_softmax
self.softmax = nn.Softmax(1)
self.use_balance = use_balance
self.balance_loss_weight = balance_loss_weight
# add_noise
self.add_noise = add_noise
self.noise_epsilon = noise_epsilon
self.warned = False
if self.add_noise:
self.weight_noise = nn.Linear(input_size, num_experts, bias=False)
self.weight_noise.weight.data = torch.zeros(
(num_experts, input_size),
requires_grad=True,
device=self.weight_noise.weight.data.device,
dtype=self.weight_noise.weight.data.dtype,
)
self.mean = 0.0
self.std = 1.0
self.normal = Normal(self.mean, self.std)
self.softplus = nn.Softplus()
self.reset_parameters()
def get_gate_network(self, gate_type, input_size, num_experts):
gate_type = gate_type.lower()
if gate_type == "linear":
gate_network = nn.Linear(input_size, num_experts, bias=False)
nn.init.zeros_(gate_network.weight)
elif gate_type == "mlp":
gate_network = torch.nn.Sequential(
torch.nn.Linear(input_size, num_experts, bias=False),
torch.nn.Tanh(),
torch.nn.Linear(num_experts, num_experts, bias=False),
)
else:
raise ValueError(f'Unexpected gate_type: {gate_type}.')
return gate_network
def reset_gate_network(self):
if "gate_network_type" not in vars(self):
raise KeyError(f"{type(self)} does not have a gate network.")
else:
self.gate_network = self.get_gate_network(
self.gate_network_type, self.input_size, self.num_experts
)
def reset_parameters(self):
if self.add_noise:
nn.init.zeros_(self.weight_noise.weight)
# nn.init.zeros_(self.weight_noise)
def cv_squared(self, x, eps=1e-10):
"""The squared coefficient of variation of a sample.
Useful as a loss to encourage a positive distribution to be more uniform.
Epsilons added for numerical stability.
Returns 0 for an empty Tensor.
Args:
x: a `Tensor`.
Returns:
a `Scalar`.s
"""
if x.shape[0] == 1:
return torch.tensor(0.0, device=x.device)
return x.float().var() / (x.float().mean() ** 2 + eps)
def forward(self, x):
logits_gate = self.gate_network(x)
if self.training and self.add_noise:
noise_mm = self.weight_noise(x)
noise_control = self.softplus(noise_mm) + self.noise_epsilon
logits_noise = torch.randn_like(logits_gate) * noise_control
logits = logits_gate + logits_noise
else:
logits = logits_gate
top_logits, top_indices = logits.topk(min(self.num_selects + 1, self.num_experts), dim=1) # ιζ©εΉΆζεΊεk+1δΈͺζι
top_k_logits = top_logits[:, :self.num_selects]
top_k_indices = top_indices[:, :self.num_selects]
top_k_scores = self.softmax(top_k_logits.to(torch.float32)) if self.use_softmax else top_k_logits
top_k_scores = top_k_scores.to(logits.dtype)
zeros = torch.zeros_like(logits, requires_grad=True, device=logits.device)
scores_filtered = zeros.scatter(dim=1, index=top_k_indices, src=top_k_scores) # shape(batch_size, num_experts)
importance = scores_filtered.sum(0) # shape(num_experts)
if self.training:
if self.add_noise and self.num_selects != self.num_experts:
batch_size = top_logits.size(0)
m = top_logits.size(1)
top_values_flat = top_logits.flatten()
threshold_positions_if_in = torch.arange(batch_size, device=x.device) * m + self.num_selects
threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in), 1)
is_in = torch.gt(logits_noise, threshold_if_in)
threshold_positions_if_out = threshold_positions_if_in - 1
threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_out), 1)
# is each value currently in the top k.
prob_if_in = self.normal.cdf((logits_gate - threshold_if_in) / noise_control)
prob_if_out = self.normal.cdf((logits_gate - threshold_if_out) / noise_control)
prob = torch.where(is_in, prob_if_in, prob_if_out)
load = prob.sum(0)
else:
load = (scores_filtered > 0).sum(0)
if not self.add_noise and not self.warned:
warnings.warn('Gradient-trackable implementation for load calculation is only available when "add_noise=True". '
'Training without noise will block the gradient from "load" path and lead to inconsistency in optimization objectives.')
self.warned = True
else:
load = (scores_filtered > 0).sum(0)
if self.use_balance:
balance_loss = self.cv_squared(importance) + self.cv_squared(load)
balance_loss *= self.balance_loss_weight
else:
balance_loss = torch.tensor(-100.0, device=x.device)
return {
"topK_indices": top_k_indices,
"topK_scores": top_k_scores,
"balance_loss": balance_loss,
"load": load,
"importance": importance,
}
class LinearGLUExperts(nn.Module):
"""
Modified from transformers.models.llama.modeling_llama.LlamaMLP
"""
__constants__ = [
"bias",
"in_features",
"hidden_features",
"out_features",
"hidden_act",
"num_experts",
"size_experts",
]
def __init__(
self,
in_features,
hidden_features,
out_features,
hidden_act,
num_experts,
size_experts=None,
bias=True,
device=None,
dtype=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super(LinearGLUExperts, self).__init__()
self.in_features = in_features
self.hidden_features = hidden_features
self.out_features = out_features
self.hidden_act = hidden_act
self.num_experts = num_experts
if size_experts is None:
# all experts share the same number of hidden neurons
assert hidden_features % num_experts == 0
size_per_expert = hidden_features // num_experts
size_experts = [size_per_expert for _ in range(num_experts)]
else:
# use specified expert sizes
assert (
len(size_experts) == num_experts
and sum(size_experts) == hidden_features
)
self.size_experts = size_experts
self.act_fn = ACT2FN[hidden_act]
self.weight_gate = nn.ParameterList()
self.weight_up = nn.ParameterList()
self.weight_down = nn.ParameterList()
for i in range(num_experts):
# this matrix will be transposed when performing linear forwarding
this_expert_weight_gate = nn.Parameter(
torch.empty((size_experts[i], in_features), **factory_kwargs)
)
# this matrix will be transposed when performing linear forwarding
this_expert_weight_up = nn.Parameter(
torch.empty((size_experts[i], in_features), **factory_kwargs)
)
# this matrix will be transposed when performing linear forwarding
this_expert_weight_down = nn.Parameter(
torch.empty((out_features, size_experts[i]), **factory_kwargs)
)
self.weight_gate.append(this_expert_weight_gate)
self.weight_up.append(this_expert_weight_up)
self.weight_down.append(this_expert_weight_down)
if bias:
self.bias_gate = nn.ParameterList()
self.bias_up = nn.ParameterList()
self.bias_down = nn.ParameterList()
for i in range(num_experts):
this_expert_bias_gate = nn.Parameter(
torch.empty((size_experts[i],), **factory_kwargs)
)
this_expert_bias_up = nn.Parameter(
torch.empty((size_experts[i],), **factory_kwargs)
)
this_expert_bias_down = nn.Parameter(
torch.empty((out_features,), **factory_kwargs)
)
self.bias_gate.append(this_expert_bias_gate)
self.bias_up.append(this_expert_bias_up)
self.bias_down.append(this_expert_bias_down)
else:
self.register_parameter("bias_gate", None)
self.register_parameter("bias_up", None)
self.register_parameter("bias_down", None)
self.reset_parameters()
def reset_parameters(self):
for i in range(self.num_experts):
nn.init.kaiming_uniform_(self.weight_gate[i], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.weight_up[i], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.weight_down[i], a=math.sqrt(5))
if self.bias_gate is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_gate[i])
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias_gate[i], -bound, bound)
if self.bias_up is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_up[i])
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias_up[i], -bound, bound)
if self.bias_down is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_down[i])
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias_down[i], -bound, bound)
def forward(self, input, i):
gate = self.act_fn(
F.linear(
input,
self.weight_gate[i],
self.bias_gate[i] if self.bias_gate is not None else None,
)
)
up = F.linear(
input,
self.weight_up[i],
self.bias_up[i] if self.bias_up is not None else None,
)
down = F.linear(
gate * up,
self.weight_down[i],
self.bias_down[i] if self.bias_down is not None else None,
)
return down
def extra_repr(self):
return (
"in_features={}, hidden_features={}, out_features={}, hidden_act={},"
" num_experts={}, size_experts={}, bias={}".format(
self.in_features,
self.hidden_features,
self.out_features,
self.hidden_act,
self.num_experts,
self.size_experts,
self.bias_gate is not None,
)
)
class UniversalCalculator(nn.Module):
def __init__(
self,
experts: LinearGLUExperts,
multiply_gate_scores=True,
score_scale_factor=1.0,
add_weight_norm: bool = False,
):
super(UniversalCalculator, self).__init__()
self.experts = experts
# TODO (zhutong): use vmap to boost the training efficiency
# self.experts_vmap = torch.vmap(self.experts)
self.multiply_gate_scores = multiply_gate_scores
self.score_scale_factor = score_scale_factor
self.num_experts = experts.num_experts
self.mlp_norm = None
if multiply_gate_scores and add_weight_norm:
raise NotImplementedError
def reset_experts(self):
self.experts.reset_parameters()
def forward(
self, x, topK_indices, topK_scores, expert_batch_size=None, **kwargs
) -> CalculatorOutput:
batch_size = topK_indices.size(0) # topK_indices: (bsz*seq_len, num_selects)
num_selects = topK_indices.size(1)
topK_indices = topK_indices.flatten() # shape(batch_size*num_selects)
topK_scores = topK_scores.flatten() # shape(batch_size*num_selects)
batch_indices = torch.arange(
batch_size, device=topK_scores.device
).repeat_interleave(num_selects)
_, index_sorted_topK_indices = topK_indices.sort(0)
sorted_topK_scores = topK_scores.index_select(0, index_sorted_topK_indices)
sorted_batch_indices = batch_indices.index_select(0, index_sorted_topK_indices)
if expert_batch_size is None:
expert_batch_size = topK_indices.bincount(
minlength=self.num_experts
).tolist()
sorted_x = x.index_select(0, sorted_batch_indices)
split_x = torch.split(sorted_x, expert_batch_size, dim=0)
expert_outputs = [
self.experts(split_x[i], i)
for i in range(self.num_experts)
if split_x[i].shape[0] > 0
]
# (bsz*seq_len*num_selects, hidden_size)
cat_expert_outputs = torch.cat(expert_outputs, 0)
output_dim = cat_expert_outputs.size(1)
if self.multiply_gate_scores:
if self.mlp_norm is None:
cat_expert_outputs = torch.mul(
cat_expert_outputs,
sorted_topK_scores.reshape(-1, 1) * self.score_scale_factor,
)
# cat_expert_outputs = torch.mul(cat_expert_outputs, sorted_topK_scores.reshape(-1, 1) * 1.0)
else:
cat_expert_outputs = torch.mul(
cat_expert_outputs, sorted_topK_scores.reshape(-1, 1)
)
cat_expert_outputs = self.mlp_norm(cat_expert_outputs)
zeros = torch.zeros(
(batch_size, output_dim),
device=cat_expert_outputs.device,
dtype=cat_expert_outputs.dtype,
)
y = zeros.index_add(0, sorted_batch_indices, cat_expert_outputs)
return CalculatorOutput(hidden_states=y, num_dropped_tokens=torch.tensor(-1.0))
class BaseMoELayer(nn.Module):
def __init__(self):
super(BaseMoELayer, self).__init__()
self.gate: TopKBalancedNoisyGate
self.calculator: UniversalCalculator
def _create_gate(self, **kwargs):
self.gate_type = kwargs.get("gate_type", "TopKBalancedNoisyGate")
if self.gate_type == "TopKBalancedNoisyGate": # noisy gate
self.gate = TopKBalancedNoisyGate(
self.input_size,
self.num_experts,
self.num_selects,
gate_network=kwargs.get("gate_network", "mlp"),
use_softmax=kwargs.get("gate_use_softmax", True),
use_balance=kwargs.get("gate_use_balance", True),
balance_loss_weight=kwargs.get("gate_balance_loss_weight", 1e-2),
add_noise=kwargs.get("gate_add_noise", True),
noise_epsilon=kwargs.get("gate_noise_epsilon", 1e-2),
)
else:
raise NotImplementedError
def _create_calculator(self, experts, **kwargs):
self.calculator_type = kwargs.get("calculator_type", "UniversalCalculator")
if self.calculator_type == "UniversalCalculator": # top K calculator
self.calculator = UniversalCalculator(
experts,
multiply_gate_scores=kwargs.get("multiply_gate_scores", True),
score_scale_factor=kwargs.get("score_scale_factor", 1.0),
add_weight_norm=kwargs.get("add_weight_norm", False),
)
else:
raise NotImplementedError
def forward(self, x) -> MoEMlpOutput:
original_shape = x.shape[:-1]
x = x.reshape(-1, self.input_size)
gate_outputs: dict = self.gate(x)
calc_outs: CalculatorOutput = self.calculator(x, **gate_outputs)
y = calc_outs.hidden_states
y = y.reshape(original_shape + (self.output_size,))
return MoEMlpOutput(
hidden_states=y,
balance_loss=gate_outputs.get("balance_loss"),
num_dropped_tokens=calc_outs.num_dropped_tokens,
gate_load=gate_outputs.get("load", torch.tensor(-1)),
gate_importance=gate_outputs.get("importance", torch.tensor(-1)),
)
def set_num_selects(self, num_selects):
if "num_selects" not in vars(self.gate):
raise KeyError(f'{self.gate_type} does not have a key named "num_selects".')
elif num_selects > self.gate.num_experts:
raise ValueError(
'The value of "num_selects" must satisfy "num_selects <= num_experts"!'
)
elif self.gate_type in ("SwitchBalancedGate",):
raise ValueError(
f"{self.gate_type} doesn't support manually setting num_selects."
)
else:
self.num_selects = num_selects
self.gate.num_selects = num_selects
def set_gate_use_softmax(self, use_softmax):
if "use_softmax" not in vars(self.gate):
raise KeyError(f'{self.gate_type} does not have a key named "use_softmax".')
else:
self.gate.use_softmax = use_softmax
def set_gate_use_balance(self, use_balance):
if "use_balance" not in vars(self.gate):
raise KeyError(f'{self.gate_type} does not have a key named "use_balance".')
else:
self.gate.use_balance = use_balance
def set_gate_balance_loss_weight(self, balance_loss_weight):
if "balance_loss_weight" not in vars(self.gate):
raise KeyError(
f'{self.gate_type} does not have a key named "balance_loss_weight".'
)
else:
self.gate.balance_loss_weight = balance_loss_weight
def set_gate_add_noise(self, add_noise):
if "add_noise" not in vars(self.gate):
raise KeyError(f'{self.gate_type} does not have a key named "add_noise".')
else:
self.gate.add_noise = add_noise
def set_gate_noise_epsilon(self, noise_epsilon):
if "noise_epsilon" not in vars(self.gate):
raise KeyError(
f'{self.gate_type} does not have a key named "noise_epsilon".'
)
else:
self.gate.noise_epsilon = noise_epsilon
def set_calculator_multiply_gate_scores(self, multiply_gate_scores):
if "multiply_gate_scores" not in vars(self.calculator):
raise KeyError(
f'{self.gate_type} does not have a key named "multiply_gate_scores".'
)
else:
self.calculator.multiply_gate_scores = multiply_gate_scores
def set_calculator_score_scale_factor(self, score_scale_factor):
if "score_scale_factor" not in vars(self.calculator):
raise KeyError(
f'{self.gate_type} does not have a key named "score_scale_factor".'
)
else:
self.calculator.score_scale_factor = score_scale_factor
def set_calculator_drop_tokens(self, drop_tokens):
if "drop_tokens" not in vars(self.calculator):
raise KeyError(f'{self.gate_type} does not have a key named "drop_tokens".')
elif (
drop_tokens
and self.calculator.dropped_padding != "zero"
and self.input_size != self.output_size
):
warnings.warn(
'Setting "drop_tokens=True" without zero dropped padding when "input_size != output_size" will cause error!'
)
else:
self.calculator.drop_tokens = drop_tokens
def set_calculator_dropped_padding(self, dropped_padding):
if "dropped_padding" not in vars(self.calculator):
raise KeyError(
f'{self.gate_type} does not have a key named "dropped_padding".'
)
elif dropped_padding not in self.calculator.available_dropped_padding_choices:
raise ValueError(
f"'dropped_padding' type not available! (available choices: {self.calculator.available_dropped_padding_choices})"
)
elif (
self.calculator.drop_tokens
and dropped_padding != "zero"
and self.input_size != self.output_size
):
warnings.warn(
f'Setting "dropped_padding={dropped_padding}" with "drop_tokens=True" when "input_size != output_size" will cause error!'
)
else:
self.calculator.dropped_padding = dropped_padding
def set_calculator_capacity_factor(self, capacity_factor):
if "capacity_factor" not in vars(self.calculator):
raise KeyError(
f'{self.gate_type} does not have a key named "capacity_factor".'
)
else:
self.calculator.capacity_factor = capacity_factor
def reset_gate_network(self):
self.gate.reset_gate_network()
def reset_experts(self):
self.calculator.reset_experts()
class LinearGLUMoELayer(BaseMoELayer):
def __init__(
self,
input_size,
hidden_size,
output_size,
hidden_act,
num_experts,
num_selects,
size_experts=None,
bias=True,
**kwargs,
):
super(LinearGLUMoELayer, self).__init__()
assert num_selects <= num_experts
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.hidden_act = hidden_act
self.num_experts = num_experts
self.num_selects = num_selects
self.size_experts = size_experts
self.bias = bias
experts = LinearGLUExperts(
input_size,
hidden_size,
output_size,
hidden_act,
num_experts,
size_experts=size_experts,
bias=bias,
)
self._create_gate(**kwargs)
self._create_calculator(experts, **kwargs)
class LlamaMoEDecoderLayer(nn.Module):
def __init__(self, config: LlamaMoEConfig, layer_index):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = LlamaAttention(config=config)
self.mlp = LlamaMLP(config)
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
gating_config = {
# all gates
"gate_type": config.gate_type,
"gate_network": config.gate_network,
"gate_use_softmax": config.gate_use_softmax,
"gate_use_balance": config.gate_use_balance,
"gate_balance_loss_weight": config.gate_balance_loss_weight,
"gate_add_noise": config.gate_add_noise,
# TopKBalancedNoisyGate
"gate_noise_epsilon": config.gate_noise_epsilon,
}
calculator_config = {
# all calculators
"calculator_type": config.calculator_type,
"multiply_gate_scores": config.multiply_gate_scores,
"score_scale_factor": (
config.score_scale_factor[layer_index]
if isinstance(config.score_scale_factor, list)
else config.score_scale_factor
),
"add_weight_norm": config.add_weight_norm,
# SwitchDropTokenCalculator
"drop_tokens": config.drop_tokens,
"dropped_padding": config.dropped_padding,
"capacity_factor": config.capacity_factor,
}
self.mlp = LinearGLUMoELayer(
input_size=self.hidden_size,
hidden_size=config.intermediate_size,
output_size=self.hidden_size,
hidden_act=config.hidden_act,
num_experts=config.num_experts,
num_selects=config.num_selects,
size_experts=(
config.size_experts[layer_index]
if config.size_experts is not None
else None
),
bias=False,
**gating_config,
**calculator_config,
)
def forward(
self,
hidden_states,
attention_mask=None,
position_ids=None,
past_key_value=None,
output_attentions=False,
use_cache=False,
) -> tuple:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
mlp_outs: MoEMlpOutput = self.mlp(hidden_states)
hidden_states = residual + mlp_outs.hidden_states
outputs = (
hidden_states,
mlp_outs.balance_loss,
mlp_outs.num_dropped_tokens,
mlp_outs.gate_load,
mlp_outs.gate_importance,
)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
def set_moe_num_selects(self, num_selects):
self.mlp.set_num_selects(num_selects)
def set_moe_gate_use_softmax(self, use_softmax):
self.mlp.set_gate_use_softmax(use_softmax)
def set_moe_gate_use_balance(self, use_balance):
self.mlp.set_gate_use_balance(use_balance)
def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
self.mlp.set_gate_balance_loss_weight(balance_loss_weight)
def set_moe_gate_add_noise(self, add_noise):
self.mlp.set_gate_add_noise(add_noise)
def set_moe_gate_noise_epsilon(self, noise_epsilon):
self.mlp.set_gate_noise_epsilon(noise_epsilon)
def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
self.mlp.set_calculator_multiply_gate_scores(multiply_gate_scores)
def set_moe_calculator_score_scale_factor(self, score_scale_factor):
self.mlp.set_calculator_score_scale_factor(score_scale_factor)
def set_moe_calculator_drop_tokens(self, drop_tokens):
self.mlp.set_calculator_drop_tokens(drop_tokens)
def set_moe_calculator_dropped_padding(self, dropped_padding):
self.mlp.set_calculator_dropped_padding(dropped_padding)
def set_moe_calculator_capacity_factor(self, capacity_factor):
self.mlp.set_calculator_capacity_factor(capacity_factor)
def reset_gate_network(self):
self.mlp.reset_gate_network()
def reset_experts(self):
self.mlp.reset_experts()
class LlamaMoEPreTrainedModel(PreTrainedModel):
config_class = LlamaMoEConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["LlamaMoEDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, LlamaMoEModel):
module.gradient_checkpointing = value
class LlamaMoEModel(LlamaMoEPreTrainedModel):
def __init__(self, config: LlamaMoEConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[LlamaMoEDecoderLayer(config, i) for i in range(config.num_hidden_layers)]
)
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at"
" the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
)
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past),
dtype=torch.bool,
device=inputs_embeds.device,
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
hidden_states = inputs_embeds
balance_loss = 0.0
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing."
" Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
num_dropped_tokens = ()
gate_load = ()
gate_importance = ()
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = (
past_key_values[idx] if past_key_values is not None else None
)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs: tuple = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
)
else:
layer_outputs: tuple = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if layer_outputs[1] is not None:
balance_loss += layer_outputs[1]
if use_cache:
next_decoder_cache += (layer_outputs[6 if output_attentions else 5],)
if output_attentions:
all_self_attns += (layer_outputs[5],)
num_dropped_tokens += (layer_outputs[2],)
gate_load += (layer_outputs[3],)
gate_importance += (layer_outputs[4],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseMoEModelOutputWithPast(
last_hidden_state=hidden_states,
balance_loss=balance_loss,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
num_dropped_tokens=num_dropped_tokens,
gate_load=gate_load,
gate_importance=gate_importance,
)
def update_config(self):
self.config.vocab_size = self.config.vocab_size
self.config.max_position_embeddings = self.config.max_position_embeddings
# ββββββββββββ changed here ββββββββββββ #
self.config.hidden_size = self.layers[0].mlp.input_size
self.config.intermediate_size = self.layers[0].mlp.hidden_size
self.config.num_hidden_layers = len(self.layers)
self.config.num_attention_heads = self.layers[0].self_attn.num_heads
self.config.hidden_act = self.layers[0].mlp.hidden_act
# ββββββββββββββββββββββββββββββββββββββ #
self.config.initializer_range = self.config.initializer_range
self.config.rms_norm_eps = self.config.rms_norm_eps
self.config.pretraining_tp = self.config.pretraining_tp
self.config.use_cache = self.config.use_cache
self.config.rope_scaling = self.config.rope_scaling
self.config._rope_scaling_validation()
self.config.num_experts = self.layers[0].mlp.num_experts
self.config.num_selects = self.layers[0].mlp.num_selects
self.config.size_experts = [
self.layers[i].mlp.calculator.experts.size_experts
for i in range(self.config.num_hidden_layers)
]
self.config.gate_type = vars(self.layers[0].mlp).get(
"gate_type", "TopKBalancedNoisyGate"
)
self.config.gate_network = vars(self.layers[0].mlp.gate).get(
"gate_network_type", "mlp"
)
self.config.gate_use_softmax = vars(self.layers[0].mlp.gate).get(
"use_softmax", True
)
self.config.gate_use_balance = vars(self.layers[0].mlp.gate).get(
"use_balance", True
)
self.config.gate_balance_loss_weight = vars(self.layers[0].mlp.gate).get(
"balance_loss_weight", 1e-2
)
self.config.gate_add_noise = vars(self.layers[0].mlp.gate).get(
"add_noise", True
)
self.config.gate_noise_epsilon = vars(self.layers[0].mlp.gate).get(
"noise_epsilon", 1e-2
)
self.config.calculator_type = vars(self.layers[0].mlp).get(
"calculator_type", "UniversalCalculator"
)
self.config.multiply_gate_scores = vars(self.layers[0].mlp.calculator).get(
"multiply_gate_scores", True
)
self.config.score_scale_factor = [
vars(self.layers[i].mlp.calculator).get("score_scale_factor", 1.0)
for i in range(self.config.num_hidden_layers)
]
self.config.drop_tokens = vars(self.layers[0].mlp.calculator).get(
"drop_tokens", True
)
self.config.dropped_padding = vars(self.layers[0].mlp.calculator).get(
"dropped_padding", "zero"
)
self.config.capacity_factor = vars(self.layers[0].mlp.calculator).get(
"capacity_factor", 1.25
)
def set_moe_num_selects(self, num_selects):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_num_selects(num_selects)
def set_moe_gate_use_softmax(self, use_softmax):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_gate_use_softmax(use_softmax)
def set_moe_gate_use_balance(self, use_balance):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_gate_use_balance(use_balance)
def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_gate_balance_loss_weight(balance_loss_weight)
def set_moe_gate_add_noise(self, add_noise):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_gate_add_noise(add_noise)
def set_moe_gate_noise_epsilon(self, noise_epsilon):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_gate_noise_epsilon(noise_epsilon)
def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_calculator_multiply_gate_scores(multiply_gate_scores)
def set_moe_calculator_score_scale_factor(
self, score_scale_factor, layer_index=None
):
if layer_index is None:
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_calculator_score_scale_factor(score_scale_factor)
else:
self.layers[layer_index].set_moe_calculator_score_scale_factor(
score_scale_factor
)
def set_moe_calculator_drop_tokens(self, drop_tokens):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_calculator_drop_tokens(drop_tokens)
def set_moe_calculator_dropped_padding(self, dropped_padding):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_calculator_dropped_padding(dropped_padding)
def set_moe_calculator_capacity_factor(self, capacity_factor):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_calculator_capacity_factor(capacity_factor)
def reset_gate_network(self):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.reset_gate_network()
def reset_experts(self):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.reset_experts()
class LlamaMoEForCausalLM(LlamaMoEPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = LlamaMoEModel(config)
self.pretraining_tp = config.pretraining_tp
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
past_key_values=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
**kwargs,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseMoEModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs.last_hidden_state
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if outputs.balance_loss is not None and outputs.balance_loss > 0:
loss += outputs.balance_loss
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return MoECausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
num_dropped_tokens=outputs.num_dropped_tokens,
balance_loss=outputs.balance_loss,
gate_load=outputs.gate_load,
gate_importance=outputs.gate_importance,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
def update_config(self):
self.model.update_config()
def set_moe_num_selects(self, num_selects):
self.model.set_moe_num_selects(num_selects)
def set_moe_gate_use_softmax(self, use_softmax):
self.model.set_moe_gate_use_softmax(use_softmax)
def set_moe_gate_use_balance(self, use_balance):
self.model.set_moe_gate_use_balance(use_balance)
def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
self.model.set_moe_gate_balance_loss_weight(balance_loss_weight)
def set_moe_gate_add_noise(self, add_noise):
self.model.set_moe_gate_add_noise(add_noise)
def set_moe_gate_noise_epsilon(self, noise_epsilon):
self.model.set_moe_gate_noise_epsilon(noise_epsilon)
def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
self.model.set_moe_calculator_multiply_gate_scores(multiply_gate_scores)
def set_moe_calculator_score_scale_factor(
self, score_scale_factor, layer_index=None
):
self.model.set_moe_calculator_score_scale_factor(
score_scale_factor, layer_index=layer_index
)
def set_moe_calculator_drop_tokens(self, drop_tokens):
self.model.set_moe_calculator_drop_tokens(drop_tokens)
def set_moe_calculator_dropped_padding(self, dropped_padding):
self.model.set_moe_calculator_dropped_padding(dropped_padding)
def set_moe_calculator_capacity_factor(self, capacity_factor):
self.model.set_moe_calculator_capacity_factor(capacity_factor)
def reset_gate_network(self):
self.model.reset_gate_network()
def reset_experts(self):
self.model.reset_experts()
|