update
Browse files- README.md +85 -0
- config.json +2 -1
- configuration_mixtral.py +8 -2
- model-00001-of-00004.safetensors +1 -1
- model-00002-of-00004.safetensors +1 -1
- model-00003-of-00004.safetensors +1 -1
- model-00004-of-00004.safetensors +1 -1
- modeling_mixtral.py +888 -52
- trainer_state.json +2027 -907
- training_args.bin +2 -2
README.md
CHANGED
@@ -1,3 +1,88 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- MoE
|
7 |
---
|
8 |
+
# LLaMA-MoE-v2-3.8B (2/8) SFT
|
9 |
+
|
10 |
+
[[💻 Code]](https://github.com/OpenSparseLLMs/LLaMA-MoE-v2) | [[📃 Technical Report]](https://arxiv.org/pdf/2411.15708)
|
11 |
+
|
12 |
+
LLaMA-MoE-v2 is a series of open-sourced Mixture-of-Expert (MoE) models based on [LLaMA3](https://github.com/facebookresearch/llama).
|
13 |
+
We build LLaMA-MoE-v2 with the following two steps:
|
14 |
+
1. **Partition** LLaMA's FFN layers or Attention layers into sparse experts and insert top-K gate for each layer of experts.
|
15 |
+
2. Supervised fine-tuning the constructed MoE models using open-source data with a two-stage training.
|
16 |
+
|
17 |
+
|
18 |
+
| Model | \#Activated Experts | \#Experts | \#Activated Params | SFT Model |
|
19 |
+
| :-----------------------: | :-----------------: | :-------: | :----------------: | :------------------------------------------------------------------------: |
|
20 |
+
| **LLaMA-MLP-MoE (2/8)** | 2 | 8 | 3.8B | [🤗 SFT](https://huggingface.co/llama-moe/LLaMA-MoE-v2-3_8B-2_8-sft) |
|
21 |
+
| **LLaMA-MLP-MoE (1+1/7)** | 2 | 8 | 3.8B | [🤗 SFT](https://huggingface.co/llama-moe/LLaMA-MoE-v2-3_8B-residual-sft) |
|
22 |
+
|
23 |
+
|
24 |
+
## 🚀 QuickStart
|
25 |
+
|
26 |
+
```python
|
27 |
+
# python>=3.10
|
28 |
+
|
29 |
+
import torch
|
30 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
31 |
+
|
32 |
+
model_dir = "llama-moe/LLaMA-MoE-v2-3_8B-2_8-sft"
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
34 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype=torch.bfloat16, trust_remote_code=True)
|
35 |
+
model.eval()
|
36 |
+
model.cuda()
|
37 |
+
|
38 |
+
input_text = "Could you recommend me some mystery novels?"
|
39 |
+
input_text = f"<|start_header_id|>user<|end_header_id|>\n\n{input_text}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
40 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
41 |
+
input_ids = inputs["input_ids"].cuda()
|
42 |
+
|
43 |
+
pred = model.generate(input_ids, max_length=200, temperature=1.0, do_sample=True, use_cache=True)
|
44 |
+
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
45 |
+
"""
|
46 |
+
I'd be delighted to recommend some mystery novels to you! Here are a few suggestions across various sub-genres:
|
47 |
+
|
48 |
+
**Classic Whodunit**
|
49 |
+
|
50 |
+
1. "And Then There Were None" by Agatha Christie - A timeless tale of ten strangers who are invited to an isolated island, only to be killed off one by one.
|
51 |
+
2. "The Murder on the Orient Express" by Agatha Christie - A classic whodunit set on a luxurious train traveling from Istanbul to Paris, where a famous author goes missing.
|
52 |
+
3. "The Devil in the White City" by Erik Larson - A non-fiction book that combines historical events with a mystery, exploring the 1893 World's Columbian Exposition in Chicago and the serial killer H.H. Holmes.
|
53 |
+
|
54 |
+
**Modern Whodunits**
|
55 |
+
|
56 |
+
1. "Gone Girl" by Gillian Flynn - A twisty, psychological thriller about a couple whose seemingly perfect ...
|
57 |
+
"""
|
58 |
+
```
|
59 |
+
|
60 |
+
## 📊 Performance
|
61 |
+
|
62 |
+
| Model | #Training Tokens | MMLU(5) | GSM8k(8) | HumanEval(pass@10) | IFEval | BoolQ(32) | SciQ | PIQA | ARC-c(25) | TruthfulQA | HellaSwag(10) |
|
63 |
+
|:---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
64 |
+
| [LLaMA3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | 15T | 67.2 | 76.5 | 71.4 | 76.5 | 83.0 | 93.2 | 78.5 | 61.9 | 51.7 | 78.8 |
|
65 |
+
| [INCITE-3B](https://huggingface.co/togethercomputer/RedPajama-INCITE-Instruct-3B-v1) | 1T | 25.1 | 2.1 | 6.92 | 30.1 | 66.5 | 94.7 | 74.4 | 40.2 | 36.4 | 65.6 |
|
66 |
+
| [Sheared-LLaMA-2.7B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT) | 50B | 28.2 | 1.9 | 3.2 | 28.8 | 67.6 | 75.8 | 41.1 | 47.6 | 71.2 | 39.0 |
|
67 |
+
| [Gemma-2-2b](https://huggingface.co/google/gemma-2-2b-it) | 2T | 53.0 | 26.3 | 46.1 | 34.9 | 72.3 | 75.8 | 67.5 | 52.6 | 50.8 | 69.0 |
|
68 |
+
| [Salamandra-2b](https://huggingface.co/BSC-LT/salamandra-2b-instruct) | 7.8T | 25.1 | 1.90 | 5.82 | 27.7 | 68.0 | 89.8 | 74.7 | 46.3 | 43.4 | 62.3 |
|
69 |
+
| [SmolLM2-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct) | 11T | 50.4 | 38.5 | 39.1 | 29.0 | 68.2 | 84.3 | 76.0 | 53.2 | 39.9 | 72.6 |
|
70 |
+
| [OpenMoE-3B-9B](https://huggingface.co/OrionZheng/openmoe-8b-chat) | 1T | 26.5 | 1.36 | 1.01 | 31.2 | 61.7 | 68.4 | 65.7 | 33.3 | 40.5 | 56.5 |
|
71 |
+
| [LLaMA-MoE-3B-7B](https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_5B-2_8-sft) | 200B | 28.2 | 4.62 | 12.0 | 28.1 | 68.1 | 88.8 | 77.9 | 44.0 | 33.3 | 73.2 |
|
72 |
+
| [OLMoE-1B-7B](https://huggingface.co/allenai/OLMoE-1B-7B-0924-SFT) | 1T | 53.8 | 40.9 | 40.5 | 35.5 | 80.9 | 94.9 | 80.1 | 55.6 | 43.3 | 79.6 |
|
73 |
+
| **MLP-MoE (8top2)** | **7B** | 40.6 | 53.1 | 53.5 | 32.7 | 74.6 | 90.6 | 69.3 | 42.8 | 45.6 | 59.0 |
|
74 |
+
| **MLP-MoE (8top2)** | **8.4B** | 41.0 | **59.6** | **57.1** | 31.7 | 74.5 | 90.2 | 69.5 | 43.3 | 46.9 | 58.1 |
|
75 |
+
| **MLP-MoE (1+7top1)** | **7B** | 42.7 | 55.0 | 51.2 | **36.0** | 76.9 | 88.8 | 67.9 | 40.2 | 46.9 | 53.7 |
|
76 |
+
|
77 |
+
|
78 |
+
## 📃 Citation
|
79 |
+
|
80 |
+
```bibtex
|
81 |
+
@misc{llama-moe-v2,
|
82 |
+
title={LLaMA-MoE v2: Exploring Sparsity of LLaMA from Perspective of Mixture-of-Experts with Post-Training},
|
83 |
+
author={Xiaoye Qu, Daize Dong, Xuyang Hu, Tong Zhu, Weigao Sun, Yu Cheng},
|
84 |
+
year={2024},
|
85 |
+
month={Nov},
|
86 |
+
url={https://arxiv.org/abs/2411.15708}
|
87 |
+
}
|
88 |
+
```
|
config.json
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/mnt/petrelfs/
|
3 |
"add_rescale_bias": false,
|
4 |
"architectures": [
|
5 |
"MixtralForCausalLM"
|
6 |
],
|
7 |
"attention_bias": false,
|
8 |
"attention_dropout": 0.0,
|
|
|
9 |
"auto_map": {
|
10 |
"AutoConfig": "configuration_mixtral.MixtralConfig",
|
11 |
"AutoModel": "modeling_mixtral.MixtralModel",
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/mnt/petrelfs/quxiaoye/models/sft-v2/moe8top2_onestage",
|
3 |
"add_rescale_bias": false,
|
4 |
"architectures": [
|
5 |
"MixtralForCausalLM"
|
6 |
],
|
7 |
"attention_bias": false,
|
8 |
"attention_dropout": 0.0,
|
9 |
+
"attn_experts": null,
|
10 |
"auto_map": {
|
11 |
"AutoConfig": "configuration_mixtral.MixtralConfig",
|
12 |
"AutoModel": "modeling_mixtral.MixtralModel",
|
configuration_mixtral.py
CHANGED
@@ -170,6 +170,7 @@ class MixtralConfig(PretrainedConfig):
|
|
170 |
num_moe_contract_layers: int = 0, # 🔍 the number of layers that are not converted into MoE at each side of the model
|
171 |
use_attn_moe: bool = False, # 🔍
|
172 |
top_k_attn: int = None, # 🔍
|
|
|
173 |
scale_factor_attn: float = None, # 🔍
|
174 |
use_layer_wise_balance: bool = False, # ✨ whether to fix the balance loss bug for Mixtral
|
175 |
add_rescale_bias: bool = False, # 🔍 whether to add bias to the AttentionMoE `o_proj` & MoE `down_proj` for distribution alignment
|
@@ -208,6 +209,7 @@ class MixtralConfig(PretrainedConfig):
|
|
208 |
self.use_attn_moe = use_attn_moe
|
209 |
self.top_k_attn = top_k_attn
|
210 |
self.scale_factor_attn = scale_factor_attn
|
|
|
211 |
|
212 |
# ✨ For balance loss bugfix
|
213 |
self.use_layer_wise_balance = use_layer_wise_balance
|
@@ -232,11 +234,15 @@ class MixtralConfig(PretrainedConfig):
|
|
232 |
if hasattr(self, "_attn_implementation_internal"):
|
233 |
if self._attn_implementation_internal is None:
|
234 |
# `config.attn_implementation` should never be None, for backward compatibility.
|
235 |
-
return "
|
|
|
236 |
else:
|
237 |
return self._attn_implementation_internal
|
238 |
else:
|
239 |
-
return "
|
|
|
|
|
|
|
240 |
|
241 |
@_attn_implementation.setter
|
242 |
def _attn_implementation(self, value):
|
|
|
170 |
num_moe_contract_layers: int = 0, # 🔍 the number of layers that are not converted into MoE at each side of the model
|
171 |
use_attn_moe: bool = False, # 🔍
|
172 |
top_k_attn: int = None, # 🔍
|
173 |
+
attn_experts: int = None,
|
174 |
scale_factor_attn: float = None, # 🔍
|
175 |
use_layer_wise_balance: bool = False, # ✨ whether to fix the balance loss bug for Mixtral
|
176 |
add_rescale_bias: bool = False, # 🔍 whether to add bias to the AttentionMoE `o_proj` & MoE `down_proj` for distribution alignment
|
|
|
209 |
self.use_attn_moe = use_attn_moe
|
210 |
self.top_k_attn = top_k_attn
|
211 |
self.scale_factor_attn = scale_factor_attn
|
212 |
+
self.attn_experts = attn_experts
|
213 |
|
214 |
# ✨ For balance loss bugfix
|
215 |
self.use_layer_wise_balance = use_layer_wise_balance
|
|
|
234 |
if hasattr(self, "_attn_implementation_internal"):
|
235 |
if self._attn_implementation_internal is None:
|
236 |
# `config.attn_implementation` should never be None, for backward compatibility.
|
237 |
+
return "flash_attention_2"
|
238 |
+
# return "eager"
|
239 |
else:
|
240 |
return self._attn_implementation_internal
|
241 |
else:
|
242 |
+
return "flash_attention_2"
|
243 |
+
# return "eager"
|
244 |
+
|
245 |
+
|
246 |
|
247 |
@_attn_implementation.setter
|
248 |
def _attn_implementation(self, value):
|
model-00001-of-00004.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4977314560
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5c37f87fd8cb399be7701cafd53561b462b68451df8888e37e27a87afd9cd80
|
3 |
size 4977314560
|
model-00002-of-00004.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4985941976
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f24b0cd37967f622d52fb345d76dcd0f26d41959a70d1bf940b9ca28f9f2bef
|
3 |
size 4985941976
|
model-00003-of-00004.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4990070968
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:501a1bdc13d200b85e7f9be67535da141dd39092f31dd91d90f220469d67d395
|
3 |
size 4990070968
|
model-00004-of-00004.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1109418960
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:086b141ea5a5163e6fcbaf0db9fa5439476fa4eac16c8b1cb0f4de33d8ceebb7
|
3 |
size 1109418960
|
modeling_mixtral.py
CHANGED
@@ -49,8 +49,6 @@ from transformers.utils.import_utils import (
|
|
49 |
is_torchdynamo_compiling,
|
50 |
)
|
51 |
|
52 |
-
from smoe.utils.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
53 |
-
|
54 |
from .configuration_mixtral import MixtralConfig
|
55 |
|
56 |
logger = logging.get_logger(__name__)
|
@@ -123,6 +121,338 @@ def is_flash_attn_available():
|
|
123 |
return is_flash_attn_2_available()
|
124 |
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
@dataclass
|
127 |
class MoeCausalLMOutputWithPast(ModelOutput):
|
128 |
"""
|
@@ -270,7 +600,7 @@ def load_balancing_loss_func(
|
|
270 |
Returns:
|
271 |
The auxiliary loss.
|
272 |
"""
|
273 |
-
if gate_logits is None:
|
274 |
return 0
|
275 |
|
276 |
# ✨ Here is the fix for balance loss in Mixtral.
|
@@ -812,16 +1142,20 @@ class MixtralAttentionMoE(MixtralAttention):
|
|
812 |
)
|
813 |
|
814 |
# 🔍
|
815 |
-
self.gate = nn.Linear(self.hidden_size, self.num_key_value_heads, bias=False)
|
816 |
self.softmax = nn.Softmax(dim=-1)
|
817 |
self.top_k_attn = config.top_k_attn
|
|
|
818 |
self.scale_factor_attn = config.scale_factor_attn
|
819 |
|
|
|
|
|
|
|
|
|
820 |
# 🔍
|
821 |
-
self.q_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.num_key_value_groups * self.head_dim, bias=False) for _ in range(self.
|
822 |
-
self.k_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.head_dim, bias=False) for _ in range(self.
|
823 |
-
self.v_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.head_dim, bias=False) for _ in range(self.
|
824 |
-
self.o_proj = nn.ModuleList([nn.Linear(self.num_key_value_groups * self.head_dim, self.hidden_size, bias=config.add_rescale_bias) for _ in range(self.
|
825 |
|
826 |
self.rotary_emb = MixtralRotaryEmbedding(
|
827 |
self.head_dim,
|
@@ -847,6 +1181,7 @@ class MixtralAttentionMoE(MixtralAttention):
|
|
847 |
raise TypeError(
|
848 |
"`past_key_value` must be a `MoECache` instance for attention MoE!"
|
849 |
)
|
|
|
850 |
device = hidden_states.device
|
851 |
dtype = hidden_states.dtype
|
852 |
bsz, q_len, hidden_dim = hidden_states.size()
|
@@ -865,12 +1200,12 @@ class MixtralAttentionMoE(MixtralAttention):
|
|
865 |
|
866 |
# One hot encode the selected experts to create an expert mask
|
867 |
# this will be used to easily index which expert is going to be sollicitated
|
868 |
-
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.
|
869 |
expert_mask = expert_mask.permute(2, 1, 0) # (num_key_value_heads, top_k_attn, bsz * q_len)
|
870 |
|
871 |
# Loop over all available experts in the model and perform the computation on each expert
|
872 |
all_attn_weights = [] if output_attentions else None
|
873 |
-
for expert_idx in range(self.
|
874 |
# expert_mask[expert_idx]: (top_k_attn, bsz * q_len)
|
875 |
# idx: the topk position. (selected_num)
|
876 |
# top_x: token index. (selected_num)
|
@@ -911,7 +1246,7 @@ class MixtralAttentionMoE(MixtralAttention):
|
|
911 |
key_states = self.k_proj[expert_idx](current_state) # 🔍 specify expert
|
912 |
value_states = self.v_proj[expert_idx](current_state) # 🔍 specify expert
|
913 |
|
914 |
-
query_states = query_states.view(bsz, this_q_len, self.num_key_value_groups, self.head_dim).transpose(1, 2) # 🔍 q_len -> this_q_len, num_heads -> num_key_value_groups
|
915 |
key_states = key_states.view(bsz, this_q_len, 1, self.head_dim).transpose(1, 2) # 🔍 q_len -> this_q_len, num_key_value_heads -> 1
|
916 |
value_states = value_states.view(bsz, this_q_len, 1, self.head_dim).transpose(1, 2) # 🔍 q_len -> this_q_len, num_key_value_heads -> 1
|
917 |
|
@@ -946,8 +1281,8 @@ class MixtralAttentionMoE(MixtralAttention):
|
|
946 |
|
947 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) # softmax temperature
|
948 |
|
949 |
-
if attn_weights.size() != (bsz, self.num_key_value_groups, this_q_len, kv_seq_len): # 🔍 q_len -> this_q_len, num_heads -> num_key_value_groups
|
950 |
-
raise ValueError(f"Attention weights should be of size {(bsz, self.num_key_value_groups, this_q_len, kv_seq_len)}, but is {attn_weights.size()}")
|
951 |
|
952 |
# 🔍 create `current_attention_mask` with reduced `seq_len`
|
953 |
# Notice that the `attention_mask` is passed intact during both training & generation, so we need to adjust the `top_x` by `past_key_values_length`.
|
@@ -961,11 +1296,12 @@ class MixtralAttentionMoE(MixtralAttention):
|
|
961 |
temp_attention_mask = attention_mask[:, previous_seen_tokens_total:].flatten() # select along dimension 1 so that we get tokens in this iteration
|
962 |
else:
|
963 |
temp_attention_mask = attention_mask.flatten() # flatten the dim
|
964 |
-
current_attention_mask[current_batch_ids, current_seq_ids] = temp_attention_mask[top_x] # assign masks sparsely
|
965 |
|
966 |
else:
|
967 |
current_attention_mask[current_batch_ids, current_seq_ids] = True # assign masks sparsely
|
968 |
|
|
|
969 |
if past_key_value is not None: # 🔍 we need to update with cached attention mask
|
970 |
current_attention_mask = past_key_value.update_attention_mask(current_attention_mask, self.layer_idx, expert_idx)
|
971 |
|
@@ -983,17 +1319,17 @@ class MixtralAttentionMoE(MixtralAttention):
|
|
983 |
raise ValueError(f"Attention mask should be of size {(bsz, 1, this_q_len, kv_seq_len)}, but is {current_attention_mask.size()}")
|
984 |
|
985 |
attn_weights = attn_weights + current_attention_mask # 🔍
|
986 |
-
|
987 |
# upcast attention to fp32
|
988 |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
989 |
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
990 |
attn_output = torch.matmul(attn_weights, value_states)
|
991 |
|
992 |
-
if attn_output.size() != (bsz, self.num_key_value_groups, this_q_len, self.head_dim): # 🔍 q_len -> this_q_len, num_heads -> num_key_value_groups
|
993 |
-
raise ValueError(f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is {attn_output.size()}")
|
994 |
|
995 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
996 |
-
attn_output = attn_output.reshape(bsz, this_q_len, self.num_key_value_groups * self.head_dim) # 🔍 q_len -> this_q_len, hidden_size -> num_key_value_groups * head_dim
|
997 |
attn_output = self.o_proj[expert_idx](attn_output)
|
998 |
# ---------------------------------------------- #
|
999 |
|
@@ -1026,27 +1362,16 @@ class MixtralAttentionMoE(MixtralAttention):
|
|
1026 |
# init
|
1027 |
attention_moe = MixtralAttentionMoE(config, layer_idx)
|
1028 |
|
|
|
1029 |
# copy weights
|
1030 |
-
num_key_value_groups = attention_moe.num_key_value_groups
|
1031 |
head_dim = attention_moe.head_dim
|
1032 |
|
1033 |
-
|
1034 |
-
# q_proj: (self.hidden_size, self.num_heads * self.head_dim)
|
1035 |
-
# k_proj: (self.hidden_size, self.num_key_value_heads * self.head_dim)
|
1036 |
-
# v_proj: (self.hidden_size, self.num_key_value_heads * self.head_dim)
|
1037 |
-
# o_proj: (self.num_heads * self.head_dim, self.hidden_size)
|
1038 |
-
|
1039 |
-
# attention_moe
|
1040 |
-
# q_proj: (self.hidden_size, self.num_key_value_groups * self.head_dim)
|
1041 |
-
# k_proj: (self.hidden_size, self.head_dim)
|
1042 |
-
# v_proj: (self.hidden_size, self.head_dim)
|
1043 |
-
# o_proj: (self.num_key_value_groups * self.head_dim, self.hidden_size)
|
1044 |
-
|
1045 |
-
for i in range(config.num_key_value_heads):
|
1046 |
indices_q_o = [j for j in range(head_dim * num_key_value_groups * i, head_dim * num_key_value_groups * (i + 1))]
|
1047 |
-
indices_k_v = [j for j in range(head_dim * i, head_dim * (i + 1))]
|
1048 |
|
1049 |
-
|
1050 |
# print(i, "indices_k_v", indices_k_v)
|
1051 |
|
1052 |
attention_moe.q_proj[i].weight.data = attention.q_proj.weight.data[indices_q_o].clone()
|
@@ -1204,6 +1529,7 @@ class MixtralFlashAttention2(MixtralAttention):
|
|
1204 |
key_states = key_states.transpose(1, 2)
|
1205 |
value_states = value_states.transpose(1, 2)
|
1206 |
|
|
|
1207 |
attn_output = self._flash_attention_forward(
|
1208 |
query_states,
|
1209 |
key_states,
|
@@ -1341,7 +1667,6 @@ class MixtralFlashAttention2(MixtralAttention):
|
|
1341 |
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
1342 |
):
|
1343 |
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
1344 |
-
|
1345 |
# On the first iteration we need to properly re-create the padding mask
|
1346 |
# by slicing it on the proper place
|
1347 |
if kv_seq_len != attention_mask.shape[-1]:
|
@@ -1389,6 +1714,517 @@ class MixtralFlashAttention2(MixtralAttention):
|
|
1389 |
)
|
1390 |
|
1391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1392 |
class MixtralBLockSparseTop2MLP(nn.Module):
|
1393 |
def __init__(self, config: MixtralConfig, ffn_dim, add_rescale_bias=False): # 🔍
|
1394 |
super().__init__()
|
@@ -1419,7 +2255,7 @@ MISTRAL_ATTENTION_CLASSES = {
|
|
1419 |
# 🔍
|
1420 |
MISTRAL_ATTENTION_MOE_CLASSES = {
|
1421 |
"eager": MixtralAttentionMoE,
|
1422 |
-
"flash_attention_2":
|
1423 |
}
|
1424 |
|
1425 |
|
@@ -1698,13 +2534,14 @@ class MixtralDecoderLayer(nn.Module):
|
|
1698 |
)
|
1699 |
self.use_attn_moe = config.use_attn_moe
|
1700 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1701 |
if self.is_moe:
|
1702 |
-
attn_class = (
|
1703 |
-
MISTRAL_ATTENTION_MOE_CLASSES[config._attn_implementation]
|
1704 |
-
if self.use_attn_moe
|
1705 |
-
else MISTRAL_ATTENTION_CLASSES[config._attn_implementation]
|
1706 |
-
)
|
1707 |
-
self.self_attn = attn_class(config, layer_idx)
|
1708 |
self.block_sparse_moe = MixtralSparseMoeBlock(config)
|
1709 |
self.mlp_residual = (
|
1710 |
MixtralBLockSparseTop2MLP(config, config.intermediate_size_residual)
|
@@ -1713,8 +2550,6 @@ class MixtralDecoderLayer(nn.Module):
|
|
1713 |
)
|
1714 |
|
1715 |
else:
|
1716 |
-
attn_class = MISTRAL_ATTENTION_CLASSES[config._attn_implementation]
|
1717 |
-
self.self_attn = attn_class(config, layer_idx)
|
1718 |
self.block_sparse_moe = MixtralBLockSparseTop2MLP(
|
1719 |
config, config.intermediate_size * config.num_local_experts
|
1720 |
)
|
@@ -1766,7 +2601,7 @@ class MixtralDecoderLayer(nn.Module):
|
|
1766 |
hidden_states = self.input_layernorm(hidden_states)
|
1767 |
|
1768 |
# 🔍 Self Attention
|
1769 |
-
if self.
|
1770 |
(
|
1771 |
hidden_states,
|
1772 |
self_attn_weights,
|
@@ -1795,18 +2630,18 @@ class MixtralDecoderLayer(nn.Module):
|
|
1795 |
|
1796 |
# Fully Connected
|
1797 |
residual = hidden_states
|
1798 |
-
|
1799 |
|
1800 |
# 🔍
|
1801 |
if self.is_moe:
|
1802 |
-
hidden_states, router_logits = self.block_sparse_moe(
|
1803 |
else:
|
1804 |
-
hidden_states = self.block_sparse_moe(
|
1805 |
router_logits = None
|
1806 |
|
1807 |
if self.mlp_residual is not None:
|
1808 |
-
|
1809 |
-
|
1810 |
hidden_states = residual + hidden_states
|
1811 |
|
1812 |
outputs = (hidden_states,)
|
@@ -2223,7 +3058,7 @@ class MixtralForCausalLM(MixtralPreTrainedModel):
|
|
2223 |
if len(valid_attn_router_logits) > 0: # exist logits that is not None
|
2224 |
attn_aux_loss = load_balancing_loss_func(
|
2225 |
valid_attn_router_logits,
|
2226 |
-
self.config.
|
2227 |
self.config.top_k_attn,
|
2228 |
use_layer_wise_balance=self.config.use_layer_wise_balance, # ✨
|
2229 |
)
|
@@ -2632,7 +3467,8 @@ class MixtralForCausalLM(MixtralPreTrainedModel):
|
|
2632 |
if past is None:
|
2633 |
if self.config.use_attn_moe: # 🔍
|
2634 |
model_kwargs["past_key_values"] = MoECache(
|
2635 |
-
self.config.num_key_value_heads
|
|
|
2636 |
)
|
2637 |
else: # 🔍
|
2638 |
model_kwargs["past_key_values"] = DynamicCache()
|
|
|
49 |
is_torchdynamo_compiling,
|
50 |
)
|
51 |
|
|
|
|
|
52 |
from .configuration_mixtral import MixtralConfig
|
53 |
|
54 |
logger = logging.get_logger(__name__)
|
|
|
121 |
return is_flash_attn_2_available()
|
122 |
|
123 |
|
124 |
+
@dataclass
|
125 |
+
class AttentionMaskConverter:
|
126 |
+
"""
|
127 |
+
A utility attention mask class that allows one to:
|
128 |
+
- Create a causal 4d mask
|
129 |
+
- Create a causal 4d mask with slided window
|
130 |
+
- Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
|
131 |
+
key_value_length) that can be multiplied with attention scores
|
132 |
+
|
133 |
+
Examples:
|
134 |
+
|
135 |
+
```python
|
136 |
+
>>> import torch
|
137 |
+
>>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
138 |
+
|
139 |
+
>>> converter = AttentionMaskConverter(True)
|
140 |
+
>>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32)
|
141 |
+
tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
142 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
143 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
144 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, -3.4028e+38],
|
145 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, 0.0000e+00]]]])
|
146 |
+
```
|
147 |
+
|
148 |
+
Parameters:
|
149 |
+
is_causal (`bool`):
|
150 |
+
Whether the attention mask should be a uni-directional (causal) or bi-directional mask.
|
151 |
+
|
152 |
+
sliding_window (`int`, *optional*):
|
153 |
+
Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
|
154 |
+
"""
|
155 |
+
|
156 |
+
is_causal: bool
|
157 |
+
sliding_window: int
|
158 |
+
|
159 |
+
def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
|
160 |
+
self.is_causal = is_causal
|
161 |
+
self.sliding_window = sliding_window
|
162 |
+
|
163 |
+
if self.sliding_window is not None and self.sliding_window <= 0:
|
164 |
+
raise ValueError(
|
165 |
+
f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
|
166 |
+
)
|
167 |
+
|
168 |
+
def to_causal_4d(
|
169 |
+
self,
|
170 |
+
batch_size: int,
|
171 |
+
query_length: int,
|
172 |
+
key_value_length: int,
|
173 |
+
dtype: torch.dtype,
|
174 |
+
device: Union[torch.device, "str"] = "cpu",
|
175 |
+
) -> Optional[torch.Tensor]:
|
176 |
+
"""
|
177 |
+
Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
|
178 |
+
bias to upper right hand triangular matrix (causal mask).
|
179 |
+
"""
|
180 |
+
if not self.is_causal:
|
181 |
+
raise ValueError(
|
182 |
+
f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True."
|
183 |
+
)
|
184 |
+
|
185 |
+
# If shape is not cached, create a new causal mask and cache it
|
186 |
+
input_shape = (batch_size, query_length)
|
187 |
+
past_key_values_length = key_value_length - query_length
|
188 |
+
|
189 |
+
# create causal mask
|
190 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
191 |
+
causal_4d_mask = None
|
192 |
+
if input_shape[-1] > 1 or self.sliding_window is not None:
|
193 |
+
causal_4d_mask = self._make_causal_mask(
|
194 |
+
input_shape,
|
195 |
+
dtype,
|
196 |
+
device=device,
|
197 |
+
past_key_values_length=past_key_values_length,
|
198 |
+
sliding_window=self.sliding_window,
|
199 |
+
)
|
200 |
+
|
201 |
+
return causal_4d_mask
|
202 |
+
|
203 |
+
def to_4d(
|
204 |
+
self,
|
205 |
+
attention_mask_2d: torch.Tensor,
|
206 |
+
query_length: int,
|
207 |
+
dtype: torch.dtype,
|
208 |
+
key_value_length: Optional[int] = None,
|
209 |
+
) -> torch.Tensor:
|
210 |
+
"""
|
211 |
+
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
|
212 |
+
key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
|
213 |
+
causal, a causal mask will be added.
|
214 |
+
"""
|
215 |
+
input_shape = (attention_mask_2d.shape[0], query_length)
|
216 |
+
|
217 |
+
# create causal mask
|
218 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
219 |
+
causal_4d_mask = None
|
220 |
+
if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
|
221 |
+
if key_value_length is None:
|
222 |
+
raise ValueError(
|
223 |
+
"This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
|
224 |
+
)
|
225 |
+
|
226 |
+
past_key_values_length = key_value_length - query_length
|
227 |
+
causal_4d_mask = self._make_causal_mask(
|
228 |
+
input_shape,
|
229 |
+
dtype,
|
230 |
+
device=attention_mask_2d.device,
|
231 |
+
past_key_values_length=past_key_values_length,
|
232 |
+
sliding_window=self.sliding_window,
|
233 |
+
)
|
234 |
+
elif self.sliding_window is not None:
|
235 |
+
raise NotImplementedError(
|
236 |
+
"Sliding window is currently only implemented for causal masking"
|
237 |
+
)
|
238 |
+
|
239 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
240 |
+
expanded_attn_mask = self._expand_mask(
|
241 |
+
attention_mask_2d, dtype, tgt_len=input_shape[-1]
|
242 |
+
).to(attention_mask_2d.device)
|
243 |
+
if causal_4d_mask is not None:
|
244 |
+
expanded_attn_mask = causal_4d_mask.masked_fill(
|
245 |
+
expanded_attn_mask.bool(), torch.finfo(dtype).min
|
246 |
+
)
|
247 |
+
|
248 |
+
# expanded_attn_mask + causal_4d_mask can cause some overflow
|
249 |
+
expanded_4d_mask = expanded_attn_mask
|
250 |
+
|
251 |
+
return expanded_4d_mask
|
252 |
+
|
253 |
+
@staticmethod
|
254 |
+
def _make_causal_mask(
|
255 |
+
input_ids_shape: torch.Size,
|
256 |
+
dtype: torch.dtype,
|
257 |
+
device: torch.device,
|
258 |
+
past_key_values_length: int = 0,
|
259 |
+
sliding_window: Optional[int] = None,
|
260 |
+
):
|
261 |
+
"""
|
262 |
+
Make causal mask used for bi-directional self-attention.
|
263 |
+
"""
|
264 |
+
bsz, tgt_len = input_ids_shape
|
265 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
266 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
267 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
268 |
+
|
269 |
+
mask = mask.to(dtype)
|
270 |
+
|
271 |
+
if past_key_values_length > 0:
|
272 |
+
mask = torch.cat(
|
273 |
+
[
|
274 |
+
torch.zeros(
|
275 |
+
tgt_len, past_key_values_length, dtype=dtype, device=device
|
276 |
+
),
|
277 |
+
mask,
|
278 |
+
],
|
279 |
+
dim=-1,
|
280 |
+
)
|
281 |
+
|
282 |
+
# add lower triangular sliding window mask if necessary
|
283 |
+
if sliding_window is not None:
|
284 |
+
diagonal = past_key_values_length - sliding_window + 1
|
285 |
+
|
286 |
+
context_mask = 1 - torch.triu(
|
287 |
+
torch.ones_like(mask, dtype=torch.int), diagonal=diagonal
|
288 |
+
)
|
289 |
+
mask.masked_fill_(context_mask.bool(), torch.finfo(dtype).min)
|
290 |
+
|
291 |
+
return mask[None, None, :, :].expand(
|
292 |
+
bsz, 1, tgt_len, tgt_len + past_key_values_length
|
293 |
+
)
|
294 |
+
|
295 |
+
@staticmethod
|
296 |
+
def _expand_mask(
|
297 |
+
mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None
|
298 |
+
):
|
299 |
+
"""
|
300 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
301 |
+
"""
|
302 |
+
bsz, src_len = mask.size()
|
303 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
304 |
+
|
305 |
+
expanded_mask = (
|
306 |
+
mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
307 |
+
)
|
308 |
+
|
309 |
+
inverted_mask = 1.0 - expanded_mask
|
310 |
+
|
311 |
+
return inverted_mask.masked_fill(
|
312 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
313 |
+
)
|
314 |
+
|
315 |
+
@staticmethod
|
316 |
+
def _unmask_unattended(
|
317 |
+
expanded_mask: torch.Tensor,
|
318 |
+
attention_mask: torch.Tensor,
|
319 |
+
unmasked_value: Union[bool, float],
|
320 |
+
):
|
321 |
+
# fmt: off
|
322 |
+
"""
|
323 |
+
Attend to all tokens in masked rows from the expanded attention mask, for example the relevant first rows when
|
324 |
+
using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
325 |
+
Details: https://github.com/pytorch/pytorch/issues/110213
|
326 |
+
|
327 |
+
`expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len].
|
328 |
+
`attention_mask` is [bsz, src_seq_len].
|
329 |
+
|
330 |
+
The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias.
|
331 |
+
|
332 |
+
For example, if `attention_mask` is
|
333 |
+
```
|
334 |
+
[[0, 0, 1],
|
335 |
+
[1, 1, 1],
|
336 |
+
[0, 1, 1]]
|
337 |
+
```
|
338 |
+
and `expanded_mask` is (e.g. here left-padding case)
|
339 |
+
```
|
340 |
+
[[[[0, 0, 0],
|
341 |
+
[0, 0, 0],
|
342 |
+
[0, 0, 1]]],
|
343 |
+
[[[1, 0, 0],
|
344 |
+
[1, 1, 0],
|
345 |
+
[1, 1, 1]]],
|
346 |
+
[[[0, 0, 0],
|
347 |
+
[0, 1, 0],
|
348 |
+
[0, 1, 1]]]]
|
349 |
+
```
|
350 |
+
then the modified `expanded_mask` will be
|
351 |
+
```
|
352 |
+
[[[[1, 1, 1], <-- modified
|
353 |
+
[1, 1, 1], <-- modified
|
354 |
+
[0, 0, 1]]],
|
355 |
+
[[[1, 0, 0],
|
356 |
+
[1, 1, 0],
|
357 |
+
[1, 1, 1]]],
|
358 |
+
[[[1, 1, 1], <-- modified
|
359 |
+
[0, 1, 0],
|
360 |
+
[0, 1, 1]]]]
|
361 |
+
```
|
362 |
+
"""
|
363 |
+
# fmt: on
|
364 |
+
|
365 |
+
# Get the index of the first non-zero value for every sample in the batch.
|
366 |
+
# In the above example, indices = [[2], [0], [1]]]
|
367 |
+
tmp = torch.arange(attention_mask.shape[1], 0, -1)
|
368 |
+
indices = torch.argmax(attention_mask.cpu() * tmp, 1, keepdim=True)
|
369 |
+
|
370 |
+
# Find the batch indexes that have unattended tokens on the leftmost side (e.g. [0, 0, 1, 1, 1]), for which the first rows of the
|
371 |
+
# expanded mask will be completely unattended.
|
372 |
+
left_masked_rows = torch.where(indices > 0)[0]
|
373 |
+
|
374 |
+
if left_masked_rows.shape[0] == 0:
|
375 |
+
return expanded_mask
|
376 |
+
indices = indices[left_masked_rows]
|
377 |
+
|
378 |
+
max_len = torch.max(indices)
|
379 |
+
range_tensor = torch.arange(max_len).unsqueeze(0)
|
380 |
+
range_tensor = range_tensor.repeat(indices.size(0), 1)
|
381 |
+
|
382 |
+
# Avoid unmasking tokens at relevant target positions (on the row axis), by rather unmasking possibly several times the first row that should always be unmasked as we filtered out the batch above.
|
383 |
+
range_tensor[range_tensor >= indices] = 0
|
384 |
+
|
385 |
+
# TODO: we may drop support for 3D attention mask as the refactor from Patrick maybe dropped this case
|
386 |
+
if expanded_mask.dim() == 4:
|
387 |
+
num_masks = expanded_mask.shape[1]
|
388 |
+
if num_masks == 1:
|
389 |
+
# Broadcast [left_masked_rows, 1], [left_masked_rows, max_len]
|
390 |
+
mask_slice = (left_masked_rows[:, None], 0, range_tensor)
|
391 |
+
else:
|
392 |
+
# Broadcast [left_masked_rows, 1, 1], [1, num_masks, 1], [left_masked_rows, 1, max_len]
|
393 |
+
mask_slice = (
|
394 |
+
left_masked_rows[:, None, None],
|
395 |
+
torch.arange(num_masks)[None, :, None],
|
396 |
+
range_tensor[:, None, :],
|
397 |
+
)
|
398 |
+
else:
|
399 |
+
# Broadcast [left_masked_rows, 1], [left_masked_rows, max_len]
|
400 |
+
mask_slice = (left_masked_rows[:, None], range_tensor)
|
401 |
+
|
402 |
+
expanded_mask[mask_slice] = unmasked_value
|
403 |
+
|
404 |
+
return expanded_mask
|
405 |
+
|
406 |
+
|
407 |
+
def _prepare_4d_causal_attention_mask(
|
408 |
+
attention_mask: Optional[torch.Tensor],
|
409 |
+
input_shape: Union[torch.Size, Tuple, List],
|
410 |
+
inputs_embeds: torch.Tensor,
|
411 |
+
past_key_values_length: int,
|
412 |
+
sliding_window: Optional[int] = None,
|
413 |
+
):
|
414 |
+
"""
|
415 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
416 |
+
`(batch_size, key_value_length)`
|
417 |
+
|
418 |
+
Args:
|
419 |
+
attention_mask (`torch.Tensor` or `None`):
|
420 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
421 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
422 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
423 |
+
inputs_embeds (`torch.Tensor`):
|
424 |
+
The embedded inputs as a torch Tensor.
|
425 |
+
past_key_values_length (`int`):
|
426 |
+
The length of the key value cache.
|
427 |
+
sliding_window (`int`, *optional*):
|
428 |
+
If the model uses windowed attention, a sliding window should be passed.
|
429 |
+
"""
|
430 |
+
attn_mask_converter = AttentionMaskConverter(
|
431 |
+
is_causal=True, sliding_window=sliding_window
|
432 |
+
)
|
433 |
+
|
434 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
435 |
+
|
436 |
+
# 4d mask is passed through the layers
|
437 |
+
if attention_mask is not None:
|
438 |
+
attention_mask = attn_mask_converter.to_4d(
|
439 |
+
attention_mask,
|
440 |
+
input_shape[-1],
|
441 |
+
key_value_length=key_value_length,
|
442 |
+
dtype=inputs_embeds.dtype,
|
443 |
+
)
|
444 |
+
else:
|
445 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
446 |
+
input_shape[0],
|
447 |
+
input_shape[-1],
|
448 |
+
key_value_length,
|
449 |
+
dtype=inputs_embeds.dtype,
|
450 |
+
device=inputs_embeds.device,
|
451 |
+
)
|
452 |
+
|
453 |
+
return attention_mask
|
454 |
+
|
455 |
+
|
456 |
@dataclass
|
457 |
class MoeCausalLMOutputWithPast(ModelOutput):
|
458 |
"""
|
|
|
600 |
Returns:
|
601 |
The auxiliary loss.
|
602 |
"""
|
603 |
+
if gate_logits is None or (isinstance(gate_logits, Iterable) and len(gate_logits) == 0):
|
604 |
return 0
|
605 |
|
606 |
# ✨ Here is the fix for balance loss in Mixtral.
|
|
|
1142 |
)
|
1143 |
|
1144 |
# 🔍
|
|
|
1145 |
self.softmax = nn.Softmax(dim=-1)
|
1146 |
self.top_k_attn = config.top_k_attn
|
1147 |
+
self.attn_experts = config.attn_experts
|
1148 |
self.scale_factor_attn = config.scale_factor_attn
|
1149 |
|
1150 |
+
self.split_ratio = self.attn_experts // self.num_key_value_heads
|
1151 |
+
|
1152 |
+
self.gate = nn.Linear(self.hidden_size, self.attn_experts, bias=False)
|
1153 |
+
|
1154 |
# 🔍
|
1155 |
+
self.q_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.num_key_value_groups * self.head_dim // self.split_ratio, bias=False) for _ in range(self.attn_experts)])
|
1156 |
+
self.k_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.head_dim, bias=False) for _ in range(self.attn_experts)])
|
1157 |
+
self.v_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.head_dim, bias=False) for _ in range(self.attn_experts)])
|
1158 |
+
self.o_proj = nn.ModuleList([nn.Linear(self.num_key_value_groups * self.head_dim // self.split_ratio, self.hidden_size, bias=config.add_rescale_bias) for _ in range(self.attn_experts)]) # 🔍 (may add bias for rescaling)
|
1159 |
|
1160 |
self.rotary_emb = MixtralRotaryEmbedding(
|
1161 |
self.head_dim,
|
|
|
1181 |
raise TypeError(
|
1182 |
"`past_key_value` must be a `MoECache` instance for attention MoE!"
|
1183 |
)
|
1184 |
+
# print("attention_mask", attention_mask, attention_mask.shape)
|
1185 |
device = hidden_states.device
|
1186 |
dtype = hidden_states.dtype
|
1187 |
bsz, q_len, hidden_dim = hidden_states.size()
|
|
|
1200 |
|
1201 |
# One hot encode the selected experts to create an expert mask
|
1202 |
# this will be used to easily index which expert is going to be sollicitated
|
1203 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.attn_experts) # (bsz * q_len, top_k_attn, num_key_value_heads)
|
1204 |
expert_mask = expert_mask.permute(2, 1, 0) # (num_key_value_heads, top_k_attn, bsz * q_len)
|
1205 |
|
1206 |
# Loop over all available experts in the model and perform the computation on each expert
|
1207 |
all_attn_weights = [] if output_attentions else None
|
1208 |
+
for expert_idx in range(self.attn_experts):
|
1209 |
# expert_mask[expert_idx]: (top_k_attn, bsz * q_len)
|
1210 |
# idx: the topk position. (selected_num)
|
1211 |
# top_x: token index. (selected_num)
|
|
|
1246 |
key_states = self.k_proj[expert_idx](current_state) # 🔍 specify expert
|
1247 |
value_states = self.v_proj[expert_idx](current_state) # 🔍 specify expert
|
1248 |
|
1249 |
+
query_states = query_states.view(bsz, this_q_len, self.num_key_value_groups // self.split_ratio, self.head_dim).transpose(1, 2) # 🔍 q_len -> this_q_len, num_heads -> num_key_value_groups
|
1250 |
key_states = key_states.view(bsz, this_q_len, 1, self.head_dim).transpose(1, 2) # 🔍 q_len -> this_q_len, num_key_value_heads -> 1
|
1251 |
value_states = value_states.view(bsz, this_q_len, 1, self.head_dim).transpose(1, 2) # 🔍 q_len -> this_q_len, num_key_value_heads -> 1
|
1252 |
|
|
|
1281 |
|
1282 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) # softmax temperature
|
1283 |
|
1284 |
+
if attn_weights.size() != (bsz, self.num_key_value_groups // self.split_ratio, this_q_len, kv_seq_len): # 🔍 q_len -> this_q_len, num_heads -> num_key_value_groups
|
1285 |
+
raise ValueError(f"Attention weights should be of size {(bsz, self.num_key_value_groups // self.split_ratio, this_q_len, kv_seq_len)}, but is {attn_weights.size()}")
|
1286 |
|
1287 |
# 🔍 create `current_attention_mask` with reduced `seq_len`
|
1288 |
# Notice that the `attention_mask` is passed intact during both training & generation, so we need to adjust the `top_x` by `past_key_values_length`.
|
|
|
1296 |
temp_attention_mask = attention_mask[:, previous_seen_tokens_total:].flatten() # select along dimension 1 so that we get tokens in this iteration
|
1297 |
else:
|
1298 |
temp_attention_mask = attention_mask.flatten() # flatten the dim
|
1299 |
+
current_attention_mask[current_batch_ids, current_seq_ids] = temp_attention_mask[top_x].bool() # assign masks sparsely
|
1300 |
|
1301 |
else:
|
1302 |
current_attention_mask[current_batch_ids, current_seq_ids] = True # assign masks sparsely
|
1303 |
|
1304 |
+
# print("current_attention_mask", current_attention_mask, current_attention_mask.shape)
|
1305 |
if past_key_value is not None: # 🔍 we need to update with cached attention mask
|
1306 |
current_attention_mask = past_key_value.update_attention_mask(current_attention_mask, self.layer_idx, expert_idx)
|
1307 |
|
|
|
1319 |
raise ValueError(f"Attention mask should be of size {(bsz, 1, this_q_len, kv_seq_len)}, but is {current_attention_mask.size()}")
|
1320 |
|
1321 |
attn_weights = attn_weights + current_attention_mask # 🔍
|
1322 |
+
# print("current_attention_mask", current_attention_mask.shape, current_attention_mask[0])
|
1323 |
# upcast attention to fp32
|
1324 |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
1325 |
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
1326 |
attn_output = torch.matmul(attn_weights, value_states)
|
1327 |
|
1328 |
+
# if attn_output.size() != (bsz, self.num_key_value_groups // self.split_ratio, this_q_len, self.head_dim): # 🔍 q_len -> this_q_len, num_heads -> num_key_value_groups
|
1329 |
+
# raise ValueError(f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is {attn_output.size()}")
|
1330 |
|
1331 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
1332 |
+
attn_output = attn_output.reshape(bsz, this_q_len, self.num_key_value_groups * self.head_dim // self.split_ratio) # 🔍 q_len -> this_q_len, hidden_size -> num_key_value_groups * head_dim
|
1333 |
attn_output = self.o_proj[expert_idx](attn_output)
|
1334 |
# ---------------------------------------------- #
|
1335 |
|
|
|
1362 |
# init
|
1363 |
attention_moe = MixtralAttentionMoE(config, layer_idx)
|
1364 |
|
1365 |
+
split = 1 # split the hidden_size, support split=1 --> 8/2, split=2 --> 16/4, split=4 --> 32/8
|
1366 |
# copy weights
|
1367 |
+
num_key_value_groups = attention_moe.num_key_value_groups // split
|
1368 |
head_dim = attention_moe.head_dim
|
1369 |
|
1370 |
+
for i in range(config.num_key_value_heads * split):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1371 |
indices_q_o = [j for j in range(head_dim * num_key_value_groups * i, head_dim * num_key_value_groups * (i + 1))]
|
1372 |
+
indices_k_v = [j for j in range(head_dim * (i // split), head_dim * ((i // split) + 1))]
|
1373 |
|
1374 |
+
print(i, "indices_q_o", indices_q_o)
|
1375 |
# print(i, "indices_k_v", indices_k_v)
|
1376 |
|
1377 |
attention_moe.q_proj[i].weight.data = attention.q_proj.weight.data[indices_q_o].clone()
|
|
|
1529 |
key_states = key_states.transpose(1, 2)
|
1530 |
value_states = value_states.transpose(1, 2)
|
1531 |
|
1532 |
+
# print("attention_mask", attention_mask, attention_mask.shape)
|
1533 |
attn_output = self._flash_attention_forward(
|
1534 |
query_states,
|
1535 |
key_states,
|
|
|
1667 |
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
1668 |
):
|
1669 |
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
|
|
1670 |
# On the first iteration we need to properly re-create the padding mask
|
1671 |
# by slicing it on the proper place
|
1672 |
if kv_seq_len != attention_mask.shape[-1]:
|
|
|
1714 |
)
|
1715 |
|
1716 |
|
1717 |
+
|
1718 |
+
class MixtralFlashAttention2MoE(MixtralFlashAttention2):
|
1719 |
+
def __init__(self, *args, **kwargs):
|
1720 |
+
super().__init__(*args, **kwargs)
|
1721 |
+
|
1722 |
+
self.top_k_attn = self.config.top_k_attn
|
1723 |
+
self.attn_experts = self.config.attn_experts
|
1724 |
+
self.scale_factor_attn = self.config.scale_factor_attn
|
1725 |
+
self.split_ratio = self.attn_experts // self.num_key_value_heads
|
1726 |
+
|
1727 |
+
self.gate = nn.Linear(self.hidden_size, self.attn_experts, bias=False)
|
1728 |
+
|
1729 |
+
self.q_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.num_key_value_groups * self.head_dim // self.split_ratio, bias=False) for _ in range(self.attn_experts)])
|
1730 |
+
self.k_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.head_dim, bias=False) for _ in range(self.attn_experts)])
|
1731 |
+
self.v_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.head_dim, bias=False) for _ in range(self.attn_experts)])
|
1732 |
+
self.o_proj = nn.ModuleList([nn.Linear(self.num_key_value_groups * self.head_dim // self.split_ratio, self.hidden_size, bias=self.config.add_rescale_bias) for _ in range(self.attn_experts)])
|
1733 |
+
|
1734 |
+
def forward(
|
1735 |
+
self,
|
1736 |
+
hidden_states: torch.Tensor,
|
1737 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1738 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1739 |
+
past_key_value: Optional[Cache] = None,
|
1740 |
+
output_attentions: bool = False,
|
1741 |
+
use_cache: bool = False,
|
1742 |
+
**kwargs,
|
1743 |
+
):
|
1744 |
+
|
1745 |
+
if "padding_mask" in kwargs:
|
1746 |
+
warnings.warn(
|
1747 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
1748 |
+
)
|
1749 |
+
|
1750 |
+
# overwrite attention_mask with padding_mask
|
1751 |
+
# attention_mask = kwargs.pop("padding_mask")
|
1752 |
+
|
1753 |
+
if past_key_value is not None and not isinstance(past_key_value, MoECache): # 🔍 type check
|
1754 |
+
raise TypeError(
|
1755 |
+
"`past_key_value` must be a `MoECache` instance for attention MoE!"
|
1756 |
+
)
|
1757 |
+
|
1758 |
+
bsz, q_len, hidden_dim = hidden_states.size()
|
1759 |
+
device = hidden_states.device
|
1760 |
+
dtype = hidden_states.dtype
|
1761 |
+
|
1762 |
+
hidden_states = hidden_states.reshape(-1, hidden_dim)
|
1763 |
+
# gate compute
|
1764 |
+
router_logits = self.gate(hidden_states)
|
1765 |
+
router_scores = F.softmax(router_logits, dim=1, dtype=torch.float)
|
1766 |
+
routing_weights, selected_experts = torch.topk(router_scores, self.top_k_attn, dim=-1)
|
1767 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
1768 |
+
routing_weights = routing_weights.to(dtype)
|
1769 |
+
|
1770 |
+
final_attn_output = torch.zeros_like(hidden_states).reshape(-1, hidden_dim)
|
1771 |
+
|
1772 |
+
expert_mask = F.one_hot(selected_experts, num_classes=self.num_heads).permute(2, 1, 0)
|
1773 |
+
|
1774 |
+
all_attn_weights = [] if output_attentions else None
|
1775 |
+
|
1776 |
+
for expert_idx in range(self.attn_experts):
|
1777 |
+
idx, top_x = torch.nonzero(expert_mask[expert_idx], as_tuple=True)
|
1778 |
+
# top_x_list = top_x.tolist()
|
1779 |
+
# idx_list = idx.tolist()
|
1780 |
+
|
1781 |
+
if top_x.shape[0] == 0 and not self.training: # skip during training will lead to asynchrony among different GPUs and blocks the training!
|
1782 |
+
if output_attentions:
|
1783 |
+
all_attn_weights.append(None)
|
1784 |
+
continue
|
1785 |
+
|
1786 |
+
# create position_ids for selected tokens
|
1787 |
+
current_batch_ids = (top_x // q_len)
|
1788 |
+
each_batch_selected_token_num = torch.bincount(current_batch_ids, minlength=bsz) # (bsz)
|
1789 |
+
this_q_len = each_batch_selected_token_num.max().item()
|
1790 |
+
|
1791 |
+
selection_mask = torch.zeros((bsz * q_len,), device=device, dtype=torch.bool)
|
1792 |
+
selection_mask[top_x] = True
|
1793 |
+
selection_mask = selection_mask.reshape(bsz, q_len)
|
1794 |
+
token_position_indices = torch.cumsum(selection_mask, dim=1) - 1
|
1795 |
+
token_position_indices = token_position_indices.flatten()
|
1796 |
+
current_seq_ids = token_position_indices[top_x]
|
1797 |
+
|
1798 |
+
|
1799 |
+
# 🔍 initialize hidden_states for this expert
|
1800 |
+
current_state = torch.zeros((bsz, this_q_len, hidden_dim), dtype=dtype, device=device)
|
1801 |
+
current_state[current_batch_ids, current_seq_ids] = hidden_states[top_x] # assign tokens sparsely
|
1802 |
+
|
1803 |
+
# for attention forward
|
1804 |
+
# expert_inputs = viewed_hidden_states[None, top_x_list].reshape(-1, self.hidden_size)
|
1805 |
+
|
1806 |
+
query_states = self.q_proj[expert_idx](current_state)
|
1807 |
+
key_states = self.k_proj[expert_idx](current_state)
|
1808 |
+
value_states = self.v_proj[expert_idx](current_state)
|
1809 |
+
|
1810 |
+
# seq_len = query_states.numel() // (bsz * self.num_key_value_groups * self.head_dim)
|
1811 |
+
query_states = query_states.view(bsz, -1, self.num_key_value_groups // self.split_ratio, self.head_dim).transpose(1, 2)
|
1812 |
+
key_states = key_states.view(bsz, -1, 1, self.head_dim).transpose(1, 2)
|
1813 |
+
value_states = value_states.view(bsz, -1, 1, self.head_dim).transpose(1, 2)
|
1814 |
+
|
1815 |
+
# for moe kv cache
|
1816 |
+
past_key_values_length = 0
|
1817 |
+
kv_seq_len = key_states.shape[-2]
|
1818 |
+
if past_key_value is not None:
|
1819 |
+
if self.layer_idx is None:
|
1820 |
+
raise ValueError(
|
1821 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
1822 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
1823 |
+
"with a layer index."
|
1824 |
+
)
|
1825 |
+
past_key_values_length = past_key_value.get_usable_length(kv_seq_len, self.layer_idx, expert_idx) # 🔍 specify expert index
|
1826 |
+
kv_seq_len += past_key_values_length
|
1827 |
+
|
1828 |
+
current_position_ids = torch.zeros((bsz, this_q_len), device=hidden_states.device, dtype=torch.long)
|
1829 |
+
current_position_ids[current_batch_ids, current_seq_ids] = position_ids.expand(bsz, q_len).flatten()[top_x]
|
1830 |
+
|
1831 |
+
if top_x.shape[0] > 0: # apply only when there are tokens
|
1832 |
+
cos, sin = self.rotary_emb(value_states, seq_len=current_position_ids.max().item() + 1) # 🔍 adjust the seq_len to the maximum possible value
|
1833 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, current_position_ids)
|
1834 |
+
|
1835 |
+
if past_key_value is not None:
|
1836 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
1837 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, expert_idx, cache_kwargs) # 🔍 specify expert index
|
1838 |
+
|
1839 |
+
# print("attention_mask", attention_mask.shape, attention_mask)
|
1840 |
+
# for current attention mask
|
1841 |
+
|
1842 |
+
'''
|
1843 |
+
current_attention_mask = torch.zeros((bsz, this_q_len), dtype=torch.bool, device=device)
|
1844 |
+
|
1845 |
+
if attention_mask is not None:
|
1846 |
+
if past_key_values_length > 0: # 🔍 we need to exclude previous tokens
|
1847 |
+
previous_seen_tokens_total = past_key_value._seen_tokens_total - q_len
|
1848 |
+
temp_attention_mask = attention_mask[:, previous_seen_tokens_total:].flatten() # select along dimension 1 so that we get tokens in this iteration
|
1849 |
+
else:
|
1850 |
+
temp_attention_mask = attention_mask.flatten() # flatten the dim
|
1851 |
+
current_attention_mask[current_batch_ids, current_seq_ids] = temp_attention_mask[top_x] # bug here !!!
|
1852 |
+
|
1853 |
+
else:
|
1854 |
+
current_attention_mask[current_batch_ids, current_seq_ids] = True # assign masks sparsely
|
1855 |
+
|
1856 |
+
if past_key_value is not None: # 🔍 we need to update with cached attention mask
|
1857 |
+
current_attention_mask = past_key_value.update_attention_mask(current_attention_mask, self.layer_idx, expert_idx)
|
1858 |
+
|
1859 |
+
|
1860 |
+
current_attention_mask = _prepare_4d_causal_attention_mask(
|
1861 |
+
current_attention_mask,
|
1862 |
+
(bsz, this_q_len),
|
1863 |
+
current_state,
|
1864 |
+
past_key_values_length,
|
1865 |
+
sliding_window=self.config.sliding_window,
|
1866 |
+
)
|
1867 |
+
|
1868 |
+
if current_attention_mask.size() != (bsz, 1, this_q_len, kv_seq_len): # 🔍 q_len -> this_q_len
|
1869 |
+
raise ValueError(f"Attention mask should be of size {(bsz, 1, this_q_len, kv_seq_len)}, but is {current_attention_mask.size()}")
|
1870 |
+
|
1871 |
+
'''
|
1872 |
+
|
1873 |
+
# for sliding window
|
1874 |
+
use_sliding_windows = (
|
1875 |
+
_flash_supports_window_size
|
1876 |
+
and getattr(self.config, "sliding_window", None) is not None
|
1877 |
+
and kv_seq_len > self.config.sliding_window
|
1878 |
+
)
|
1879 |
+
|
1880 |
+
if not _flash_supports_window_size:
|
1881 |
+
logger.warning_once(
|
1882 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
1883 |
+
" make sure to upgrade flash-attn library."
|
1884 |
+
)
|
1885 |
+
|
1886 |
+
# wait for change! sliding_window=4096
|
1887 |
+
if past_key_value is not None:
|
1888 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
1889 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
1890 |
+
if (
|
1891 |
+
getattr(self.config, "sliding_window", None) is not None
|
1892 |
+
and kv_seq_len > self.config.sliding_window
|
1893 |
+
and cache_has_contents
|
1894 |
+
):
|
1895 |
+
slicing_tokens = 1 - self.config.sliding_window
|
1896 |
+
|
1897 |
+
past_key = past_key_value[self.layer_idx][0]
|
1898 |
+
past_value = past_key_value[self.layer_idx][1]
|
1899 |
+
|
1900 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
1901 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
1902 |
+
|
1903 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
1904 |
+
raise ValueError(
|
1905 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
1906 |
+
f" {past_key.shape}"
|
1907 |
+
)
|
1908 |
+
|
1909 |
+
if attention_mask is not None:
|
1910 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
1911 |
+
attention_mask = torch.cat(
|
1912 |
+
[attention_mask, torch.ones_like(attention_mask[:, -1:])],
|
1913 |
+
dim=-1,
|
1914 |
+
)
|
1915 |
+
|
1916 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
1917 |
+
key_states, value_states = past_key_value.update(
|
1918 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
1919 |
+
)
|
1920 |
+
|
1921 |
+
# for input dtype
|
1922 |
+
input_dtype = query_states.dtype
|
1923 |
+
if input_dtype == torch.float32:
|
1924 |
+
# Handle the case where the model is quantized
|
1925 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
1926 |
+
target_dtype = self.config._pre_quantization_dtype
|
1927 |
+
else:
|
1928 |
+
target_dtype = self.q_proj[0].weight.dtype
|
1929 |
+
|
1930 |
+
logger.warning_once(
|
1931 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
1932 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
1933 |
+
f" {target_dtype}."
|
1934 |
+
)
|
1935 |
+
|
1936 |
+
query_states = query_states.to(target_dtype)
|
1937 |
+
key_states = key_states.to(target_dtype)
|
1938 |
+
value_states = value_states.to(target_dtype)
|
1939 |
+
|
1940 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
1941 |
+
|
1942 |
+
repeat_num = query_states.shape[1]
|
1943 |
+
key_states = repeat_kv(key_states, repeat_num)
|
1944 |
+
value_states = repeat_kv(value_states, repeat_num)
|
1945 |
+
|
1946 |
+
# print("repeat_num", repeat_num)
|
1947 |
+
# print("query_states shape", query_states.shape, key_states.shape, value_states.shape)
|
1948 |
+
|
1949 |
+
# Reashape to the expected shape for Flash Attention
|
1950 |
+
query_states = query_states.transpose(1, 2)
|
1951 |
+
key_states = key_states.transpose(1, 2)
|
1952 |
+
value_states = value_states.transpose(1, 2)
|
1953 |
+
|
1954 |
+
attn_output = self._flash_attention_forward(
|
1955 |
+
query_states,
|
1956 |
+
key_states,
|
1957 |
+
value_states,
|
1958 |
+
attention_mask,
|
1959 |
+
this_q_len,
|
1960 |
+
dropout=dropout_rate,
|
1961 |
+
use_sliding_windows=use_sliding_windows,
|
1962 |
+
)
|
1963 |
+
|
1964 |
+
attn_output = attn_output.reshape(bsz, this_q_len, self.num_key_value_groups * self.head_dim // self.split_ratio).contiguous()
|
1965 |
+
attn_output = self.o_proj[expert_idx](attn_output)
|
1966 |
+
attn_output = attn_output[current_batch_ids, current_seq_ids] * (routing_weights[top_x, idx, None] * self.scale_factor_attn)
|
1967 |
+
|
1968 |
+
final_attn_output.index_add_(0, top_x, attn_output)
|
1969 |
+
|
1970 |
+
final_attn_output = final_attn_output.reshape(bsz, q_len, hidden_dim)
|
1971 |
+
|
1972 |
+
if not output_attentions:
|
1973 |
+
attn_weights = None
|
1974 |
+
|
1975 |
+
return final_attn_output, attn_weights, past_key_value, router_logits # 🔍 return an extra `router_logits`
|
1976 |
+
|
1977 |
+
|
1978 |
+
|
1979 |
+
class MixtralFlashAttention2MoE_zt(MixtralFlashAttention2):
|
1980 |
+
def __init__(self, *args, **kwargs):
|
1981 |
+
super().__init__(*args, **kwargs)
|
1982 |
+
|
1983 |
+
self.top_k_attn = self.config.top_k_attn
|
1984 |
+
self.scale_factor_attn = self.config.scale_factor_attn
|
1985 |
+
# self.num_heads
|
1986 |
+
# self.head_dim
|
1987 |
+
# self.num_key_value_heads
|
1988 |
+
# self.num_key_value_groups # total number of experts
|
1989 |
+
assert self.top_k_attn <= self.num_key_value_groups
|
1990 |
+
# assert self.top_k_attn % self.num_key_value_heads == 0
|
1991 |
+
self.attn_hsz = self.hidden_size // self.num_key_value_groups * self.top_k_attn
|
1992 |
+
self.kv_repeat_num = self.attn_hsz // (self.num_key_value_heads * self.head_dim)
|
1993 |
+
self.simulated_attn_head_num = self.attn_hsz // self.head_dim
|
1994 |
+
assert self.attn_hsz % (self.num_key_value_heads * self.head_dim) == 0
|
1995 |
+
assert self.simulated_attn_head_num == self.num_heads * (self.top_k_attn / self.num_key_value_groups)
|
1996 |
+
assert self.kv_repeat_num * self.num_key_value_heads == self.simulated_attn_head_num
|
1997 |
+
|
1998 |
+
self.gate = nn.Linear(self.hidden_size, self.num_key_value_groups, bias=False)
|
1999 |
+
# tzhu: there are self.num_key_value_groups experts
|
2000 |
+
# each expert has a size of self.attn_hsz
|
2001 |
+
self.q_proj = nn.ModuleList(
|
2002 |
+
[nn.Linear(self.hidden_size, self.attn_hsz) for _ in range(self.num_key_value_groups)]
|
2003 |
+
)
|
2004 |
+
self.o_proj = nn.ModuleList(
|
2005 |
+
[nn.Linear(self.attn_hsz, self.hidden_size) for _ in range(self.num_key_value_groups)]
|
2006 |
+
)
|
2007 |
+
|
2008 |
+
def forward(
|
2009 |
+
self,
|
2010 |
+
hidden_states: torch.Tensor,
|
2011 |
+
attention_mask: Optional[torch.Tensor] = None,
|
2012 |
+
position_ids: Optional[torch.LongTensor] = None,
|
2013 |
+
past_key_value: Optional[Cache] = None,
|
2014 |
+
output_attentions: bool = False,
|
2015 |
+
use_cache: bool = False,
|
2016 |
+
**kwargs,
|
2017 |
+
):
|
2018 |
+
if "padding_mask" in kwargs:
|
2019 |
+
warnings.warn(
|
2020 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
2021 |
+
)
|
2022 |
+
|
2023 |
+
# overwrite attention_mask with padding_mask
|
2024 |
+
attention_mask = kwargs.pop("padding_mask")
|
2025 |
+
bsz, q_len, _ = hidden_states.size()
|
2026 |
+
|
2027 |
+
key_states = self.k_proj(hidden_states)
|
2028 |
+
value_states = self.v_proj(hidden_states)
|
2029 |
+
|
2030 |
+
# tzhu: attn-moe on q_proj
|
2031 |
+
viewed_hidden_states = hidden_states.view(bsz * q_len, self.hidden_size)
|
2032 |
+
# router
|
2033 |
+
router_logits = self.gate(viewed_hidden_states)
|
2034 |
+
router_scores = F.softmax(router_logits, dim=-1, dtype=torch.float)
|
2035 |
+
routing_weights, selected_experts = torch.topk(router_scores, self.top_k_attn, dim=-1)
|
2036 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
2037 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
2038 |
+
query_states = torch.zeros(
|
2039 |
+
(bsz * q_len, self.attn_hsz),
|
2040 |
+
dtype=hidden_states.dtype,
|
2041 |
+
device=hidden_states.device,
|
2042 |
+
)
|
2043 |
+
# expert_mask: (num_experts, top_k_attn, bsz * q_len)
|
2044 |
+
expert_mask = F.one_hot(selected_experts, num_classes=self.num_heads).permute(2, 1, 0)
|
2045 |
+
for expert_idx in range(self.num_key_value_groups):
|
2046 |
+
expert_layer = self.q_proj[expert_idx]
|
2047 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
2048 |
+
top_x_list = top_x.tolist()
|
2049 |
+
idx_list = idx.tolist()
|
2050 |
+
expert_inputs = viewed_hidden_states[None, top_x_list].reshape(-1, self.hidden_size)
|
2051 |
+
# inputs (-1, hidden_size) -> outputs (-1, attn_hsz)
|
2052 |
+
expert_outs = expert_layer(expert_inputs) * routing_weights[top_x_list, idx_list, None] * self.scale_factor_attn
|
2053 |
+
query_states.index_add_(0, top_x, expert_outs.to(query_states.dtype))
|
2054 |
+
query_states = query_states.view(bsz, q_len, self.attn_hsz)
|
2055 |
+
# query_states = query_states.view(
|
2056 |
+
# bsz, q_len, self.num_heads, self.simulated_attn_head_num
|
2057 |
+
# ).transpose(1, 2)
|
2058 |
+
query_states = query_states.view(
|
2059 |
+
bsz, q_len, self.simulated_attn_head_num, self.head_dim
|
2060 |
+
).transpose(1, 2)
|
2061 |
+
key_states = key_states.view(
|
2062 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
2063 |
+
).transpose(1, 2)
|
2064 |
+
value_states = value_states.view(
|
2065 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
2066 |
+
).transpose(1, 2)
|
2067 |
+
|
2068 |
+
kv_seq_len = key_states.shape[-2]
|
2069 |
+
if past_key_value is not None:
|
2070 |
+
if self.layer_idx is None:
|
2071 |
+
raise ValueError(
|
2072 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
2073 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
2074 |
+
"with a layer index."
|
2075 |
+
)
|
2076 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
2077 |
+
|
2078 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
2079 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
2080 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
2081 |
+
|
2082 |
+
query_states, key_states = apply_rotary_pos_emb(
|
2083 |
+
query_states, key_states, cos, sin, position_ids
|
2084 |
+
)
|
2085 |
+
|
2086 |
+
use_sliding_windows = (
|
2087 |
+
_flash_supports_window_size
|
2088 |
+
and getattr(self.config, "sliding_window", None) is not None
|
2089 |
+
and kv_seq_len > self.config.sliding_window
|
2090 |
+
)
|
2091 |
+
|
2092 |
+
if not _flash_supports_window_size:
|
2093 |
+
logger.warning_once(
|
2094 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
2095 |
+
" make sure to upgrade flash-attn library."
|
2096 |
+
)
|
2097 |
+
|
2098 |
+
if past_key_value is not None:
|
2099 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
2100 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
2101 |
+
if (
|
2102 |
+
getattr(self.config, "sliding_window", None) is not None
|
2103 |
+
and kv_seq_len > self.config.sliding_window
|
2104 |
+
and cache_has_contents
|
2105 |
+
):
|
2106 |
+
slicing_tokens = 1 - self.config.sliding_window
|
2107 |
+
|
2108 |
+
past_key = past_key_value[self.layer_idx][0]
|
2109 |
+
past_value = past_key_value[self.layer_idx][1]
|
2110 |
+
|
2111 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
2112 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
2113 |
+
|
2114 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
2115 |
+
raise ValueError(
|
2116 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
2117 |
+
f" {past_key.shape}"
|
2118 |
+
)
|
2119 |
+
|
2120 |
+
if attention_mask is not None:
|
2121 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
2122 |
+
attention_mask = torch.cat(
|
2123 |
+
[attention_mask, torch.ones_like(attention_mask[:, -1:])],
|
2124 |
+
dim=-1,
|
2125 |
+
)
|
2126 |
+
|
2127 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
2128 |
+
key_states, value_states = past_key_value.update(
|
2129 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
2130 |
+
)
|
2131 |
+
|
2132 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
2133 |
+
key_states = repeat_kv(key_states, self.kv_repeat_num)
|
2134 |
+
value_states = repeat_kv(value_states, self.kv_repeat_num)
|
2135 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
2136 |
+
|
2137 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
2138 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
2139 |
+
# cast them back in float16 just to be sure everything works as expected.
|
2140 |
+
input_dtype = query_states.dtype
|
2141 |
+
if input_dtype == torch.float32:
|
2142 |
+
# Handle the case where the model is quantized
|
2143 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
2144 |
+
target_dtype = self.config._pre_quantization_dtype
|
2145 |
+
else:
|
2146 |
+
target_dtype = self.q_proj.weight.dtype
|
2147 |
+
|
2148 |
+
logger.warning_once(
|
2149 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
2150 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
2151 |
+
f" {target_dtype}."
|
2152 |
+
)
|
2153 |
+
|
2154 |
+
query_states = query_states.to(target_dtype)
|
2155 |
+
key_states = key_states.to(target_dtype)
|
2156 |
+
value_states = value_states.to(target_dtype)
|
2157 |
+
|
2158 |
+
# Reashape to the expected shape for Flash Attention
|
2159 |
+
query_states = query_states.transpose(1, 2)
|
2160 |
+
key_states = key_states.transpose(1, 2)
|
2161 |
+
value_states = value_states.transpose(1, 2)
|
2162 |
+
|
2163 |
+
attn_output = self._flash_attention_forward(
|
2164 |
+
query_states,
|
2165 |
+
key_states,
|
2166 |
+
value_states,
|
2167 |
+
attention_mask,
|
2168 |
+
q_len,
|
2169 |
+
dropout=dropout_rate,
|
2170 |
+
use_sliding_windows=use_sliding_windows,
|
2171 |
+
)
|
2172 |
+
|
2173 |
+
attn_output = attn_output.reshape(bsz * q_len, self.attn_hsz).contiguous()
|
2174 |
+
final_attn_output = torch.zeros(
|
2175 |
+
(bsz * q_len, self.hidden_size),
|
2176 |
+
dtype=hidden_states.dtype,
|
2177 |
+
device=hidden_states.device,
|
2178 |
+
)
|
2179 |
+
for expert_idx in range(self.num_key_value_groups):
|
2180 |
+
expert_layer = self.o_proj[expert_idx]
|
2181 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
2182 |
+
top_x_list = top_x.tolist()
|
2183 |
+
idx_list = idx.tolist()
|
2184 |
+
expert_inputs = attn_output[None, top_x_list].reshape(-1, self.attn_hsz)
|
2185 |
+
expert_outs = expert_layer(expert_inputs) * routing_weights[top_x_list, idx_list, None] * self.scale_factor_attn
|
2186 |
+
final_attn_output.index_add_(0, top_x, expert_outs.to(final_attn_output.dtype))
|
2187 |
+
final_attn_output = final_attn_output.view(bsz, q_len, self.hidden_size)
|
2188 |
+
|
2189 |
+
if not output_attentions:
|
2190 |
+
attn_weights = None
|
2191 |
+
|
2192 |
+
return final_attn_output, attn_weights, past_key_value, router_logits
|
2193 |
+
|
2194 |
+
|
2195 |
+
@torch.no_grad()
|
2196 |
+
def from_vanilla_attention(attention: MixtralAttention, top_k_attn, scale_factor_attn):
|
2197 |
+
# config
|
2198 |
+
layer_idx = attention.layer_idx
|
2199 |
+
config = attention.config
|
2200 |
+
config.top_k_attn = top_k_attn
|
2201 |
+
config.scale_factor_attn = scale_factor_attn
|
2202 |
+
|
2203 |
+
# init
|
2204 |
+
attention_moe = MixtralFlashAttention2MoE(config, layer_idx)
|
2205 |
+
|
2206 |
+
# copy weights
|
2207 |
+
num_key_value_groups = attention_moe.num_key_value_groups
|
2208 |
+
head_dim = attention_moe.head_dim
|
2209 |
+
|
2210 |
+
for i in range(num_key_value_groups):
|
2211 |
+
indices_q_o = []
|
2212 |
+
for j in range(attention_moe.num_key_value_heads):
|
2213 |
+
k = i + j * num_key_value_groups
|
2214 |
+
indices_q_o.extend(
|
2215 |
+
list(range(k * head_dim, (k + 1) * head_dim))
|
2216 |
+
)
|
2217 |
+
|
2218 |
+
print(i, "indices_q_o", indices_q_o)
|
2219 |
+
|
2220 |
+
attention_moe.q_proj[i].weight.data = attention.q_proj.weight.data[indices_q_o].clone()
|
2221 |
+
attention_moe.o_proj[i].weight.data = attention.o_proj.weight.data[:, indices_q_o].clone()
|
2222 |
+
|
2223 |
+
return attention_moe
|
2224 |
+
|
2225 |
+
|
2226 |
+
|
2227 |
+
|
2228 |
class MixtralBLockSparseTop2MLP(nn.Module):
|
2229 |
def __init__(self, config: MixtralConfig, ffn_dim, add_rescale_bias=False): # 🔍
|
2230 |
super().__init__()
|
|
|
2255 |
# 🔍
|
2256 |
MISTRAL_ATTENTION_MOE_CLASSES = {
|
2257 |
"eager": MixtralAttentionMoE,
|
2258 |
+
"flash_attention_2": MixtralFlashAttention2MoE,
|
2259 |
}
|
2260 |
|
2261 |
|
|
|
2534 |
)
|
2535 |
self.use_attn_moe = config.use_attn_moe
|
2536 |
|
2537 |
+
if self.use_attn_moe:
|
2538 |
+
attn_class = MISTRAL_ATTENTION_MOE_CLASSES[config._attn_implementation]
|
2539 |
+
else:
|
2540 |
+
attn_class = MISTRAL_ATTENTION_CLASSES[config._attn_implementation]
|
2541 |
+
self.self_attn = attn_class(config, layer_idx)
|
2542 |
+
|
2543 |
+
|
2544 |
if self.is_moe:
|
|
|
|
|
|
|
|
|
|
|
|
|
2545 |
self.block_sparse_moe = MixtralSparseMoeBlock(config)
|
2546 |
self.mlp_residual = (
|
2547 |
MixtralBLockSparseTop2MLP(config, config.intermediate_size_residual)
|
|
|
2550 |
)
|
2551 |
|
2552 |
else:
|
|
|
|
|
2553 |
self.block_sparse_moe = MixtralBLockSparseTop2MLP(
|
2554 |
config, config.intermediate_size * config.num_local_experts
|
2555 |
)
|
|
|
2601 |
hidden_states = self.input_layernorm(hidden_states)
|
2602 |
|
2603 |
# 🔍 Self Attention
|
2604 |
+
if self.use_attn_moe:
|
2605 |
(
|
2606 |
hidden_states,
|
2607 |
self_attn_weights,
|
|
|
2630 |
|
2631 |
# Fully Connected
|
2632 |
residual = hidden_states
|
2633 |
+
hidden_states_input = self.post_attention_layernorm(hidden_states)
|
2634 |
|
2635 |
# 🔍
|
2636 |
if self.is_moe:
|
2637 |
+
hidden_states, router_logits = self.block_sparse_moe(hidden_states_input)
|
2638 |
else:
|
2639 |
+
hidden_states = self.block_sparse_moe(hidden_states_input)
|
2640 |
router_logits = None
|
2641 |
|
2642 |
if self.mlp_residual is not None:
|
2643 |
+
hidden_states += self.mlp_residual(hidden_states_input) #
|
2644 |
+
|
2645 |
hidden_states = residual + hidden_states
|
2646 |
|
2647 |
outputs = (hidden_states,)
|
|
|
3058 |
if len(valid_attn_router_logits) > 0: # exist logits that is not None
|
3059 |
attn_aux_loss = load_balancing_loss_func(
|
3060 |
valid_attn_router_logits,
|
3061 |
+
self.config.attn_experts,
|
3062 |
self.config.top_k_attn,
|
3063 |
use_layer_wise_balance=self.config.use_layer_wise_balance, # ✨
|
3064 |
)
|
|
|
3467 |
if past is None:
|
3468 |
if self.config.use_attn_moe: # 🔍
|
3469 |
model_kwargs["past_key_values"] = MoECache(
|
3470 |
+
# self.config.num_key_value_heads
|
3471 |
+
self.config.attn_experts
|
3472 |
)
|
3473 |
else: # 🔍
|
3474 |
model_kwargs["past_key_values"] = DynamicCache()
|
trainer_state.json
CHANGED
@@ -1,1278 +1,2398 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch": 1.
|
5 |
"eval_steps": 500,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
-
"epoch": 0.
|
13 |
-
"grad_norm":
|
14 |
-
"learning_rate": 2.
|
15 |
-
"loss": 0.
|
16 |
-
"step":
|
17 |
},
|
18 |
{
|
19 |
-
"epoch": 0.
|
20 |
-
"grad_norm":
|
21 |
-
"learning_rate":
|
22 |
-
"loss": 0.
|
23 |
-
"step":
|
24 |
},
|
25 |
{
|
26 |
-
"epoch": 0.
|
27 |
-
"grad_norm": 0.
|
28 |
-
"learning_rate":
|
29 |
-
"loss": 0.
|
30 |
-
"step":
|
31 |
},
|
32 |
{
|
33 |
-
"epoch": 0.
|
34 |
-
"grad_norm":
|
35 |
-
"learning_rate":
|
36 |
-
"loss": 0.
|
37 |
-
"step":
|
38 |
},
|
39 |
{
|
40 |
-
"epoch": 0.
|
41 |
-
"grad_norm":
|
42 |
-
"learning_rate": 1.
|
43 |
-
"loss": 0.
|
44 |
-
"step":
|
45 |
},
|
46 |
{
|
47 |
-
"epoch": 0.
|
48 |
-
"grad_norm":
|
49 |
-
"learning_rate": 1.
|
50 |
-
"loss": 0.
|
51 |
-
"step":
|
52 |
},
|
53 |
{
|
54 |
-
"epoch": 0.
|
55 |
-
"grad_norm":
|
56 |
-
"learning_rate": 1.
|
57 |
-
"loss": 0.
|
58 |
-
"step":
|
59 |
},
|
60 |
{
|
61 |
-
"epoch": 0.
|
62 |
-
"grad_norm":
|
63 |
-
"learning_rate":
|
64 |
-
"loss": 0.
|
65 |
-
"step":
|
66 |
},
|
67 |
{
|
68 |
-
"epoch": 0.
|
69 |
-
"grad_norm":
|
70 |
-
"learning_rate":
|
71 |
-
"loss": 0.
|
72 |
-
"step":
|
73 |
},
|
74 |
{
|
75 |
-
"epoch": 0.
|
76 |
-
"grad_norm": 0.
|
77 |
-
"learning_rate":
|
78 |
-
"loss": 0.
|
79 |
-
"step":
|
80 |
},
|
81 |
{
|
82 |
-
"epoch": 0.
|
83 |
-
"grad_norm":
|
84 |
-
"learning_rate":
|
85 |
-
"loss": 0.
|
86 |
-
"step":
|
87 |
},
|
88 |
{
|
89 |
-
"epoch": 0.
|
90 |
-
"grad_norm":
|
91 |
-
"learning_rate":
|
92 |
-
"loss": 0.
|
93 |
-
"step":
|
94 |
},
|
95 |
{
|
96 |
-
"epoch": 0.
|
97 |
-
"grad_norm":
|
98 |
-
"learning_rate":
|
99 |
-
"loss": 0.
|
100 |
-
"step":
|
101 |
},
|
102 |
{
|
103 |
-
"epoch": 0.
|
104 |
-
"grad_norm": 0.
|
105 |
-
"learning_rate":
|
106 |
-
"loss": 0.
|
107 |
-
"step":
|
108 |
},
|
109 |
{
|
110 |
-
"epoch": 0.
|
111 |
-
"grad_norm": 0.
|
112 |
-
"learning_rate":
|
113 |
-
"loss": 0.
|
114 |
-
"step":
|
115 |
},
|
116 |
{
|
117 |
-
"epoch": 0.
|
118 |
-
"grad_norm": 0.
|
119 |
-
"learning_rate":
|
120 |
-
"loss": 0.
|
121 |
-
"step":
|
122 |
},
|
123 |
{
|
124 |
-
"epoch": 0.
|
125 |
-
"grad_norm": 0.
|
126 |
-
"learning_rate":
|
127 |
-
"loss": 0.
|
128 |
-
"step":
|
129 |
},
|
130 |
{
|
131 |
-
"epoch": 0.
|
132 |
-
"grad_norm": 0.
|
133 |
-
"learning_rate":
|
134 |
-
"loss": 0.
|
135 |
-
"step":
|
136 |
},
|
137 |
{
|
138 |
-
"epoch": 0.
|
139 |
-
"grad_norm": 0.
|
140 |
-
"learning_rate":
|
141 |
-
"loss": 0.
|
142 |
-
"step":
|
143 |
},
|
144 |
{
|
145 |
-
"epoch": 0.
|
146 |
-
"grad_norm": 0.
|
147 |
-
"learning_rate":
|
148 |
-
"loss": 0.
|
149 |
-
"step":
|
150 |
},
|
151 |
{
|
152 |
-
"epoch": 0.
|
153 |
-
"grad_norm": 0.
|
154 |
-
"learning_rate":
|
155 |
-
"loss": 0.
|
156 |
-
"step":
|
157 |
},
|
158 |
{
|
159 |
-
"epoch": 0.
|
160 |
-
"grad_norm": 0.
|
161 |
-
"learning_rate":
|
162 |
-
"loss": 0.
|
163 |
-
"step":
|
164 |
},
|
165 |
{
|
166 |
-
"epoch": 0.
|
167 |
-
"grad_norm": 0.
|
168 |
-
"learning_rate":
|
169 |
-
"loss": 0.
|
170 |
-
"step":
|
171 |
},
|
172 |
{
|
173 |
-
"epoch": 0.
|
174 |
-
"grad_norm": 0.
|
175 |
-
"learning_rate":
|
176 |
-
"loss": 0.
|
177 |
-
"step":
|
178 |
},
|
179 |
{
|
180 |
-
"epoch": 0.
|
181 |
-
"grad_norm": 0.
|
182 |
-
"learning_rate":
|
183 |
-
"loss": 0.
|
184 |
-
"step":
|
185 |
},
|
186 |
{
|
187 |
-
"epoch": 0.
|
188 |
-
"grad_norm": 0.
|
189 |
-
"learning_rate":
|
190 |
-
"loss": 0.
|
191 |
-
"step":
|
192 |
},
|
193 |
{
|
194 |
-
"epoch": 0.
|
195 |
-
"grad_norm": 0.
|
196 |
-
"learning_rate":
|
197 |
-
"loss": 0.
|
198 |
-
"step":
|
199 |
},
|
200 |
{
|
201 |
-
"epoch": 0.
|
202 |
-
"grad_norm": 0.
|
203 |
-
"learning_rate":
|
204 |
-
"loss": 0.
|
205 |
-
"step":
|
206 |
},
|
207 |
{
|
208 |
-
"epoch": 0.
|
209 |
-
"grad_norm": 0.
|
210 |
-
"learning_rate":
|
211 |
-
"loss": 0.
|
212 |
-
"step":
|
213 |
},
|
214 |
{
|
215 |
-
"epoch": 0.
|
216 |
-
"grad_norm": 0.
|
217 |
-
"learning_rate":
|
218 |
-
"loss": 0.
|
219 |
-
"step":
|
220 |
},
|
221 |
{
|
222 |
-
"epoch": 0.
|
223 |
-
"grad_norm": 0.
|
224 |
-
"learning_rate":
|
225 |
-
"loss": 0.
|
226 |
-
"step":
|
227 |
},
|
228 |
{
|
229 |
-
"epoch": 0.
|
230 |
-
"grad_norm": 0.
|
231 |
-
"learning_rate":
|
232 |
-
"loss": 0.
|
233 |
-
"step":
|
234 |
},
|
235 |
{
|
236 |
-
"epoch": 0.
|
237 |
-
"grad_norm": 0.
|
238 |
-
"learning_rate":
|
239 |
-
"loss": 0.
|
240 |
-
"step":
|
241 |
},
|
242 |
{
|
243 |
-
"epoch": 0.
|
244 |
-
"grad_norm": 0.
|
245 |
-
"learning_rate":
|
246 |
-
"loss": 0.
|
247 |
-
"step":
|
248 |
},
|
249 |
{
|
250 |
-
"epoch": 0.
|
251 |
-
"grad_norm": 0.
|
252 |
-
"learning_rate":
|
253 |
-
"loss": 0.
|
254 |
-
"step":
|
255 |
},
|
256 |
{
|
257 |
-
"epoch": 0.
|
258 |
-
"grad_norm": 0.
|
259 |
-
"learning_rate":
|
260 |
-
"loss": 0.
|
261 |
-
"step":
|
262 |
},
|
263 |
{
|
264 |
-
"epoch": 0.
|
265 |
-
"grad_norm": 0.
|
266 |
-
"learning_rate":
|
267 |
-
"loss": 0.
|
268 |
-
"step":
|
269 |
},
|
270 |
{
|
271 |
-
"epoch": 0.
|
272 |
-
"grad_norm": 0.
|
273 |
-
"learning_rate":
|
274 |
-
"loss": 0.
|
275 |
-
"step":
|
276 |
},
|
277 |
{
|
278 |
-
"epoch": 0.
|
279 |
-
"grad_norm": 0.
|
280 |
-
"learning_rate":
|
281 |
-
"loss": 0.
|
282 |
-
"step":
|
283 |
},
|
284 |
{
|
285 |
-
"epoch": 0.
|
286 |
-
"grad_norm": 0.
|
287 |
-
"learning_rate":
|
288 |
-
"loss": 0.
|
289 |
-
"step":
|
290 |
},
|
291 |
{
|
292 |
-
"epoch": 0.
|
293 |
-
"grad_norm": 0.
|
294 |
-
"learning_rate":
|
295 |
-
"loss": 0.
|
296 |
-
"step":
|
297 |
},
|
298 |
{
|
299 |
-
"epoch": 0.
|
300 |
-
"grad_norm": 0.
|
301 |
-
"learning_rate":
|
302 |
-
"loss": 0.
|
303 |
-
"step":
|
304 |
},
|
305 |
{
|
306 |
-
"epoch": 0.
|
307 |
-
"grad_norm": 0.
|
308 |
-
"learning_rate":
|
309 |
-
"loss": 0.
|
310 |
-
"step":
|
311 |
},
|
312 |
{
|
313 |
-
"epoch": 0.
|
314 |
-
"grad_norm": 0.
|
315 |
-
"learning_rate":
|
316 |
-
"loss": 0.
|
317 |
-
"step":
|
318 |
},
|
319 |
{
|
320 |
-
"epoch": 0.
|
321 |
-
"grad_norm": 0.
|
322 |
-
"learning_rate":
|
323 |
-
"loss": 0.
|
324 |
-
"step":
|
325 |
},
|
326 |
{
|
327 |
-
"epoch": 0.
|
328 |
-
"grad_norm": 0.
|
329 |
-
"learning_rate":
|
330 |
-
"loss": 0.
|
331 |
-
"step":
|
332 |
},
|
333 |
{
|
334 |
-
"epoch": 0.
|
335 |
-
"grad_norm": 0.
|
336 |
-
"learning_rate":
|
337 |
-
"loss": 0.
|
338 |
-
"step":
|
339 |
},
|
340 |
{
|
341 |
-
"epoch": 0.
|
342 |
-
"grad_norm": 0.
|
343 |
-
"learning_rate":
|
344 |
-
"loss": 0.
|
345 |
-
"step":
|
346 |
},
|
347 |
{
|
348 |
-
"epoch": 0.
|
349 |
-
"grad_norm": 0.
|
350 |
-
"learning_rate":
|
351 |
-
"loss": 0.
|
352 |
-
"step":
|
353 |
},
|
354 |
{
|
355 |
-
"epoch": 0.
|
356 |
-
"grad_norm": 0.
|
357 |
-
"learning_rate":
|
358 |
-
"loss": 0.
|
359 |
-
"step":
|
360 |
},
|
361 |
{
|
362 |
-
"epoch": 0.
|
363 |
-
"grad_norm": 0.
|
364 |
-
"learning_rate":
|
365 |
-
"loss": 0.
|
366 |
-
"step":
|
367 |
},
|
368 |
{
|
369 |
-
"epoch": 0.
|
370 |
-
"grad_norm": 0.
|
371 |
-
"learning_rate":
|
372 |
-
"loss": 0.
|
373 |
-
"step":
|
374 |
},
|
375 |
{
|
376 |
-
"epoch": 0.
|
377 |
-
"grad_norm": 0.
|
378 |
-
"learning_rate":
|
379 |
-
"loss": 0.
|
380 |
-
"step":
|
381 |
},
|
382 |
{
|
383 |
-
"epoch": 0.
|
384 |
-
"grad_norm": 0.
|
385 |
-
"learning_rate":
|
386 |
-
"loss": 0.
|
387 |
-
"step":
|
388 |
},
|
389 |
{
|
390 |
-
"epoch": 0.
|
391 |
-
"grad_norm": 0.
|
392 |
-
"learning_rate":
|
393 |
-
"loss": 0.
|
394 |
-
"step":
|
395 |
},
|
396 |
{
|
397 |
-
"epoch": 0.
|
398 |
-
"grad_norm": 0.
|
399 |
-
"learning_rate":
|
400 |
-
"loss": 0.
|
401 |
-
"step":
|
402 |
},
|
403 |
{
|
404 |
-
"epoch": 0.
|
405 |
-
"grad_norm": 0.
|
406 |
-
"learning_rate":
|
407 |
-
"loss": 0.
|
408 |
-
"step":
|
409 |
},
|
410 |
{
|
411 |
-
"epoch": 0.
|
412 |
-
"grad_norm": 0.
|
413 |
-
"learning_rate":
|
414 |
-
"loss": 0.
|
415 |
-
"step":
|
416 |
},
|
417 |
{
|
418 |
-
"epoch": 0.
|
419 |
-
"grad_norm": 0.
|
420 |
-
"learning_rate":
|
421 |
-
"loss": 0.
|
422 |
-
"step":
|
423 |
},
|
424 |
{
|
425 |
-
"epoch": 0.
|
426 |
-
"grad_norm": 0.
|
427 |
-
"learning_rate":
|
428 |
-
"loss": 0.
|
429 |
-
"step":
|
430 |
},
|
431 |
{
|
432 |
-
"epoch": 0.
|
433 |
-
"grad_norm": 0.
|
434 |
-
"learning_rate":
|
435 |
-
"loss": 0.
|
436 |
-
"step":
|
437 |
},
|
438 |
{
|
439 |
-
"epoch": 0.
|
440 |
-
"grad_norm": 0.
|
441 |
-
"learning_rate":
|
442 |
-
"loss": 0.
|
443 |
-
"step":
|
444 |
},
|
445 |
{
|
446 |
-
"epoch": 0.
|
447 |
-
"grad_norm": 0.
|
448 |
-
"learning_rate":
|
449 |
-
"loss": 0.
|
450 |
-
"step":
|
451 |
},
|
452 |
{
|
453 |
-
"epoch": 0.
|
454 |
-
"grad_norm": 0.
|
455 |
-
"learning_rate":
|
456 |
-
"loss": 0.
|
457 |
-
"step":
|
458 |
},
|
459 |
{
|
460 |
-
"epoch": 0.
|
461 |
-
"grad_norm": 0.
|
462 |
-
"learning_rate":
|
463 |
-
"loss": 0.
|
464 |
-
"step":
|
465 |
},
|
466 |
{
|
467 |
-
"epoch": 0.
|
468 |
-
"grad_norm": 0.
|
469 |
-
"learning_rate":
|
470 |
-
"loss": 0.
|
471 |
-
"step":
|
472 |
},
|
473 |
{
|
474 |
-
"epoch": 0.
|
475 |
-
"grad_norm": 0.
|
476 |
-
"learning_rate":
|
477 |
-
"loss": 0.
|
478 |
-
"step":
|
479 |
},
|
480 |
{
|
481 |
-
"epoch": 0.
|
482 |
-
"grad_norm": 0.
|
483 |
-
"learning_rate":
|
484 |
-
"loss": 0.
|
485 |
-
"step":
|
486 |
},
|
487 |
{
|
488 |
-
"epoch": 0.
|
489 |
-
"grad_norm": 0.
|
490 |
-
"learning_rate":
|
491 |
-
"loss": 0.
|
492 |
-
"step":
|
493 |
},
|
494 |
{
|
495 |
-
"epoch": 0.
|
496 |
-
"grad_norm": 0.
|
497 |
-
"learning_rate":
|
498 |
-
"loss": 0.
|
499 |
-
"step":
|
500 |
},
|
501 |
{
|
502 |
-
"epoch": 0.
|
503 |
-
"grad_norm": 0.
|
504 |
-
"learning_rate":
|
505 |
-
"loss": 0.
|
506 |
-
"step":
|
507 |
},
|
508 |
{
|
509 |
-
"epoch": 0.
|
510 |
-
"grad_norm": 0.
|
511 |
-
"learning_rate":
|
512 |
-
"loss": 0.
|
513 |
-
"step":
|
514 |
},
|
515 |
{
|
516 |
-
"epoch": 0.
|
517 |
-
"grad_norm": 0.
|
518 |
-
"learning_rate":
|
519 |
-
"loss": 0.
|
520 |
-
"step":
|
521 |
},
|
522 |
{
|
523 |
-
"epoch": 0.
|
524 |
-
"grad_norm": 0.
|
525 |
-
"learning_rate":
|
526 |
-
"loss": 0.
|
527 |
-
"step":
|
528 |
},
|
529 |
{
|
530 |
-
"epoch": 0.
|
531 |
-
"grad_norm": 0.
|
532 |
-
"learning_rate":
|
533 |
-
"loss": 0.
|
534 |
-
"step":
|
535 |
},
|
536 |
{
|
537 |
-
"epoch": 0.
|
538 |
-
"grad_norm": 0.
|
539 |
-
"learning_rate":
|
540 |
-
"loss": 0.
|
541 |
-
"step":
|
542 |
},
|
543 |
{
|
544 |
-
"epoch": 0.
|
545 |
-
"grad_norm": 0.
|
546 |
-
"learning_rate":
|
547 |
-
"loss": 0.
|
548 |
-
"step":
|
549 |
},
|
550 |
{
|
551 |
-
"epoch": 0.
|
552 |
-
"grad_norm": 0.
|
553 |
-
"learning_rate":
|
554 |
-
"loss": 0.
|
555 |
-
"step":
|
556 |
},
|
557 |
{
|
558 |
-
"epoch": 0.
|
559 |
-
"grad_norm": 0.
|
560 |
-
"learning_rate":
|
561 |
-
"loss": 0.
|
562 |
-
"step":
|
563 |
},
|
564 |
{
|
565 |
-
"epoch": 0.
|
566 |
-
"grad_norm": 0.
|
567 |
-
"learning_rate":
|
568 |
-
"loss": 0.
|
569 |
-
"step":
|
570 |
},
|
571 |
{
|
572 |
-
"epoch": 0.
|
573 |
-
"grad_norm": 0.
|
574 |
-
"learning_rate":
|
575 |
-
"loss": 0.
|
576 |
-
"step":
|
577 |
},
|
578 |
{
|
579 |
-
"epoch": 0.
|
580 |
-
"grad_norm": 0.
|
581 |
-
"learning_rate":
|
582 |
-
"loss": 0.
|
583 |
-
"step":
|
584 |
},
|
585 |
{
|
586 |
-
"epoch": 0.
|
587 |
-
"grad_norm": 0.
|
588 |
-
"learning_rate":
|
589 |
-
"loss": 0.
|
590 |
-
"step":
|
591 |
},
|
592 |
{
|
593 |
-
"epoch": 0.
|
594 |
-
"grad_norm": 0.
|
595 |
-
"learning_rate":
|
596 |
-
"loss": 0.
|
597 |
-
"step":
|
598 |
},
|
599 |
{
|
600 |
-
"epoch": 0.
|
601 |
-
"grad_norm": 0.
|
602 |
-
"learning_rate":
|
603 |
-
"loss": 0.
|
604 |
-
"step":
|
605 |
},
|
606 |
{
|
607 |
-
"epoch": 0.
|
608 |
-
"grad_norm": 0.
|
609 |
-
"learning_rate":
|
610 |
-
"loss": 0.
|
611 |
-
"step":
|
612 |
},
|
613 |
{
|
614 |
-
"epoch": 0.
|
615 |
-
"grad_norm": 0.
|
616 |
-
"learning_rate":
|
617 |
-
"loss": 0.
|
618 |
-
"step":
|
619 |
},
|
620 |
{
|
621 |
-
"epoch": 0.
|
622 |
-
"grad_norm": 0.
|
623 |
-
"learning_rate":
|
624 |
-
"loss": 0.
|
625 |
-
"step":
|
626 |
},
|
627 |
{
|
628 |
-
"epoch": 0.
|
629 |
-
"grad_norm": 0.
|
630 |
-
"learning_rate":
|
631 |
-
"loss": 0.
|
632 |
-
"step":
|
633 |
},
|
634 |
{
|
635 |
-
"epoch": 0.
|
636 |
-
"grad_norm": 0.
|
637 |
-
"learning_rate":
|
638 |
-
"loss": 0.
|
639 |
-
"step":
|
640 |
},
|
641 |
{
|
642 |
-
"epoch": 0.
|
643 |
-
"grad_norm": 0.
|
644 |
-
"learning_rate":
|
645 |
-
"loss": 0.
|
646 |
-
"step":
|
647 |
},
|
648 |
{
|
649 |
-
"epoch": 0.
|
650 |
-
"grad_norm": 0.
|
651 |
-
"learning_rate":
|
652 |
-
"loss": 0.
|
653 |
-
"step":
|
654 |
},
|
655 |
{
|
656 |
-
"epoch": 0.
|
657 |
-
"grad_norm": 0.
|
658 |
-
"learning_rate":
|
659 |
-
"loss": 0.
|
660 |
-
"step":
|
661 |
},
|
662 |
{
|
663 |
-
"epoch": 0.
|
664 |
-
"grad_norm": 0.
|
665 |
-
"learning_rate":
|
666 |
-
"loss": 0.
|
667 |
-
"step":
|
668 |
},
|
669 |
{
|
670 |
-
"epoch": 0.
|
671 |
-
"grad_norm": 0.
|
672 |
-
"learning_rate":
|
673 |
-
"loss": 0.
|
674 |
-
"step":
|
675 |
},
|
676 |
{
|
677 |
-
"epoch": 0.
|
678 |
-
"grad_norm": 0.
|
679 |
-
"learning_rate":
|
680 |
-
"loss": 0.
|
681 |
-
"step":
|
682 |
},
|
683 |
{
|
684 |
-
"epoch":
|
685 |
-
"grad_norm":
|
686 |
-
"learning_rate":
|
687 |
-
"loss": 0.
|
688 |
-
"step":
|
689 |
},
|
690 |
{
|
691 |
-
"epoch":
|
692 |
-
"grad_norm": 0.
|
693 |
-
"learning_rate":
|
694 |
-
"loss": 0.
|
695 |
-
"step":
|
696 |
},
|
697 |
{
|
698 |
-
"epoch":
|
699 |
-
"grad_norm": 0.
|
700 |
-
"learning_rate":
|
701 |
-
"loss": 0.
|
702 |
-
"step":
|
703 |
},
|
704 |
{
|
705 |
-
"epoch":
|
706 |
-
"grad_norm": 0.
|
707 |
-
"learning_rate":
|
708 |
-
"loss": 0.
|
709 |
-
"step":
|
710 |
},
|
711 |
{
|
712 |
-
"epoch":
|
713 |
-
"grad_norm": 0.
|
714 |
-
"learning_rate":
|
715 |
-
"loss": 0.
|
716 |
-
"step":
|
717 |
},
|
718 |
{
|
719 |
-
"epoch":
|
720 |
-
"grad_norm": 0.
|
721 |
-
"learning_rate":
|
722 |
-
"loss": 0.
|
723 |
-
"step":
|
724 |
},
|
725 |
{
|
726 |
-
"epoch":
|
727 |
-
"grad_norm": 0.
|
728 |
-
"learning_rate":
|
729 |
-
"loss": 0.
|
730 |
-
"step":
|
731 |
},
|
732 |
{
|
733 |
-
"epoch":
|
734 |
-
"grad_norm": 0.
|
735 |
-
"learning_rate":
|
736 |
-
"loss": 0.
|
737 |
-
"step":
|
738 |
},
|
739 |
{
|
740 |
-
"epoch":
|
741 |
-
"grad_norm": 0.
|
742 |
-
"learning_rate":
|
743 |
-
"loss": 0.
|
744 |
-
"step":
|
745 |
},
|
746 |
{
|
747 |
-
"epoch":
|
748 |
-
"grad_norm": 0.
|
749 |
-
"learning_rate":
|
750 |
-
"loss": 0.
|
751 |
-
"step":
|
752 |
},
|
753 |
{
|
754 |
-
"epoch":
|
755 |
-
"grad_norm": 0.
|
756 |
-
"learning_rate":
|
757 |
-
"loss": 0.
|
758 |
-
"step":
|
759 |
},
|
760 |
{
|
761 |
-
"epoch":
|
762 |
-
"grad_norm": 0.
|
763 |
-
"learning_rate":
|
764 |
-
"loss": 0.
|
765 |
-
"step":
|
766 |
},
|
767 |
{
|
768 |
-
"epoch":
|
769 |
-
"grad_norm": 0.
|
770 |
-
"learning_rate":
|
771 |
-
"loss": 0.
|
772 |
-
"step":
|
773 |
},
|
774 |
{
|
775 |
-
"epoch":
|
776 |
-
"grad_norm": 0.
|
777 |
-
"learning_rate":
|
778 |
-
"loss": 0.
|
779 |
-
"step":
|
780 |
},
|
781 |
{
|
782 |
-
"epoch":
|
783 |
-
"grad_norm": 0.
|
784 |
-
"learning_rate":
|
785 |
-
"loss": 0.
|
786 |
-
"step":
|
787 |
},
|
788 |
{
|
789 |
-
"epoch":
|
790 |
-
"grad_norm": 0.
|
791 |
-
"learning_rate":
|
792 |
-
"loss": 0.
|
793 |
-
"step":
|
794 |
},
|
795 |
{
|
796 |
-
"epoch":
|
797 |
-
"grad_norm": 0.
|
798 |
-
"learning_rate":
|
799 |
-
"loss": 0.
|
800 |
-
"step":
|
801 |
},
|
802 |
{
|
803 |
-
"epoch":
|
804 |
-
"grad_norm": 0.
|
805 |
-
"learning_rate":
|
806 |
-
"loss": 0.
|
807 |
-
"step":
|
808 |
},
|
809 |
{
|
810 |
-
"epoch":
|
811 |
-
"grad_norm": 0.
|
812 |
-
"learning_rate":
|
813 |
-
"loss": 0.
|
814 |
-
"step":
|
815 |
},
|
816 |
{
|
817 |
-
"epoch":
|
818 |
-
"grad_norm": 0.
|
819 |
-
"learning_rate":
|
820 |
-
"loss": 0.
|
821 |
-
"step":
|
822 |
},
|
823 |
{
|
824 |
-
"epoch":
|
825 |
-
"grad_norm": 0.
|
826 |
-
"learning_rate":
|
827 |
-
"loss": 0.
|
828 |
-
"step":
|
829 |
},
|
830 |
{
|
831 |
-
"epoch":
|
832 |
-
"grad_norm": 0.
|
833 |
-
"learning_rate":
|
834 |
-
"loss": 0.
|
835 |
-
"step":
|
836 |
},
|
837 |
{
|
838 |
-
"epoch":
|
839 |
-
"grad_norm": 0.
|
840 |
-
"learning_rate":
|
841 |
-
"loss": 0.
|
842 |
-
"step":
|
843 |
},
|
844 |
{
|
845 |
-
"epoch":
|
846 |
-
"grad_norm": 0.
|
847 |
-
"learning_rate":
|
848 |
-
"loss": 0.
|
849 |
-
"step":
|
850 |
},
|
851 |
{
|
852 |
-
"epoch":
|
853 |
-
"grad_norm": 0.
|
854 |
-
"learning_rate":
|
855 |
-
"loss": 0.
|
856 |
-
"step":
|
857 |
},
|
858 |
{
|
859 |
-
"epoch":
|
860 |
-
"grad_norm":
|
861 |
-
"learning_rate":
|
862 |
-
"loss": 0.
|
863 |
-
"step":
|
864 |
},
|
865 |
{
|
866 |
-
"epoch":
|
867 |
-
"grad_norm": 0.
|
868 |
-
"learning_rate":
|
869 |
-
"loss": 0.
|
870 |
-
"step":
|
871 |
},
|
872 |
{
|
873 |
-
"epoch":
|
874 |
-
"grad_norm": 0.
|
875 |
-
"learning_rate":
|
876 |
-
"loss": 0.
|
877 |
-
"step":
|
878 |
},
|
879 |
{
|
880 |
-
"epoch":
|
881 |
-
"grad_norm": 0.
|
882 |
-
"learning_rate":
|
883 |
-
"loss": 0.
|
884 |
-
"step":
|
885 |
},
|
886 |
{
|
887 |
-
"epoch":
|
888 |
-
"grad_norm": 0.
|
889 |
-
"learning_rate":
|
890 |
-
"loss": 0.
|
891 |
-
"step":
|
892 |
},
|
893 |
{
|
894 |
-
"epoch":
|
895 |
-
"grad_norm": 0.
|
896 |
-
"learning_rate":
|
897 |
-
"loss": 0.
|
898 |
-
"step":
|
899 |
},
|
900 |
{
|
901 |
-
"epoch":
|
902 |
-
"grad_norm": 0.
|
903 |
-
"learning_rate":
|
904 |
-
"loss": 0.
|
905 |
-
"step":
|
906 |
},
|
907 |
{
|
908 |
-
"epoch":
|
909 |
-
"grad_norm": 0.
|
910 |
-
"learning_rate":
|
911 |
-
"loss": 0.
|
912 |
-
"step":
|
913 |
},
|
914 |
{
|
915 |
-
"epoch":
|
916 |
-
"grad_norm": 0.
|
917 |
-
"learning_rate":
|
918 |
-
"loss": 0.
|
919 |
-
"step":
|
920 |
},
|
921 |
{
|
922 |
-
"epoch":
|
923 |
-
"grad_norm": 0.
|
924 |
-
"learning_rate":
|
925 |
-
"loss": 0.
|
926 |
-
"step":
|
927 |
},
|
928 |
{
|
929 |
-
"epoch":
|
930 |
-
"grad_norm": 0.
|
931 |
-
"learning_rate":
|
932 |
-
"loss": 0.
|
933 |
-
"step":
|
934 |
},
|
935 |
{
|
936 |
-
"epoch":
|
937 |
-
"grad_norm": 0.
|
938 |
-
"learning_rate":
|
939 |
-
"loss": 0.
|
940 |
-
"step":
|
941 |
},
|
942 |
{
|
943 |
-
"epoch":
|
944 |
-
"grad_norm": 0.
|
945 |
-
"learning_rate":
|
946 |
-
"loss": 0.
|
947 |
-
"step":
|
948 |
},
|
949 |
{
|
950 |
-
"epoch":
|
951 |
-
"grad_norm": 0.
|
952 |
-
"learning_rate":
|
953 |
-
"loss": 0.
|
954 |
-
"step":
|
955 |
},
|
956 |
{
|
957 |
-
"epoch":
|
958 |
-
"grad_norm": 0.
|
959 |
-
"learning_rate":
|
960 |
-
"loss": 0.
|
961 |
-
"step":
|
962 |
},
|
963 |
{
|
964 |
-
"epoch":
|
965 |
-
"grad_norm": 0.
|
966 |
-
"learning_rate":
|
967 |
-
"loss": 0.
|
968 |
-
"step":
|
969 |
},
|
970 |
{
|
971 |
-
"epoch":
|
972 |
-
"grad_norm": 0.
|
973 |
-
"learning_rate":
|
974 |
-
"loss": 0.
|
975 |
-
"step":
|
976 |
},
|
977 |
{
|
978 |
-
"epoch":
|
979 |
-
"grad_norm": 0.
|
980 |
-
"learning_rate":
|
981 |
-
"loss": 0.
|
982 |
-
"step":
|
983 |
},
|
984 |
{
|
985 |
-
"epoch":
|
986 |
-
"grad_norm": 0.
|
987 |
-
"learning_rate":
|
988 |
-
"loss": 0.
|
989 |
-
"step":
|
990 |
},
|
991 |
{
|
992 |
-
"epoch":
|
993 |
-
"grad_norm": 0.
|
994 |
-
"learning_rate":
|
995 |
-
"loss": 0.
|
996 |
-
"step":
|
997 |
},
|
998 |
{
|
999 |
-
"epoch":
|
1000 |
-
"grad_norm": 0.
|
1001 |
-
"learning_rate":
|
1002 |
-
"loss": 0.
|
1003 |
-
"step":
|
1004 |
},
|
1005 |
{
|
1006 |
-
"epoch":
|
1007 |
-
"grad_norm": 0.
|
1008 |
-
"learning_rate":
|
1009 |
-
"loss": 0.
|
1010 |
-
"step":
|
1011 |
},
|
1012 |
{
|
1013 |
-
"epoch":
|
1014 |
-
"grad_norm": 0.
|
1015 |
-
"learning_rate":
|
1016 |
-
"loss": 0.
|
1017 |
-
"step":
|
1018 |
},
|
1019 |
{
|
1020 |
-
"epoch":
|
1021 |
-
"grad_norm": 0.
|
1022 |
-
"learning_rate": 1.
|
1023 |
-
"loss": 0.
|
1024 |
-
"step":
|
1025 |
},
|
1026 |
{
|
1027 |
-
"epoch":
|
1028 |
-
"grad_norm": 0.
|
1029 |
-
"learning_rate": 1.
|
1030 |
-
"loss": 0.
|
1031 |
-
"step":
|
1032 |
},
|
1033 |
{
|
1034 |
-
"epoch":
|
1035 |
-
"grad_norm": 0.
|
1036 |
-
"learning_rate": 1.
|
1037 |
-
"loss": 0.
|
1038 |
-
"step":
|
1039 |
},
|
1040 |
{
|
1041 |
-
"epoch":
|
1042 |
-
"grad_norm": 0.
|
1043 |
-
"learning_rate": 1.
|
1044 |
-
"loss": 0.
|
1045 |
-
"step":
|
1046 |
},
|
1047 |
{
|
1048 |
-
"epoch":
|
1049 |
-
"grad_norm": 0.
|
1050 |
-
"learning_rate": 1.
|
1051 |
-
"loss": 0.
|
1052 |
-
"step":
|
1053 |
},
|
1054 |
{
|
1055 |
-
"epoch":
|
1056 |
-
"grad_norm": 0.
|
1057 |
-
"learning_rate":
|
1058 |
-
"loss": 0.
|
1059 |
-
"step":
|
1060 |
},
|
1061 |
{
|
1062 |
-
"epoch":
|
1063 |
-
"grad_norm": 0.
|
1064 |
-
"learning_rate":
|
1065 |
-
"loss": 0.
|
1066 |
-
"step":
|
1067 |
},
|
1068 |
{
|
1069 |
-
"epoch":
|
1070 |
-
"grad_norm": 0.
|
1071 |
-
"learning_rate":
|
1072 |
-
"loss": 0.
|
1073 |
-
"step":
|
1074 |
},
|
1075 |
{
|
1076 |
-
"epoch":
|
1077 |
-
"grad_norm": 0.
|
1078 |
-
"learning_rate":
|
1079 |
-
"loss": 0.
|
1080 |
-
"step":
|
1081 |
},
|
1082 |
{
|
1083 |
-
"epoch":
|
1084 |
-
"grad_norm": 0.
|
1085 |
-
"learning_rate":
|
1086 |
-
"loss": 0.
|
1087 |
-
"step":
|
1088 |
},
|
1089 |
{
|
1090 |
-
"epoch":
|
1091 |
-
"grad_norm": 0.
|
1092 |
-
"learning_rate":
|
1093 |
-
"loss": 0.
|
1094 |
-
"step":
|
1095 |
},
|
1096 |
{
|
1097 |
-
"epoch":
|
1098 |
-
"grad_norm":
|
1099 |
-
"learning_rate":
|
1100 |
-
"loss": 0.
|
1101 |
-
"step":
|
1102 |
},
|
1103 |
{
|
1104 |
-
"epoch":
|
1105 |
-
"grad_norm": 0.
|
1106 |
-
"learning_rate":
|
1107 |
-
"loss": 0.
|
1108 |
-
"step":
|
1109 |
},
|
1110 |
{
|
1111 |
-
"epoch":
|
1112 |
-
"grad_norm": 0.
|
1113 |
-
"learning_rate":
|
1114 |
-
"loss": 0.
|
1115 |
-
"step":
|
1116 |
},
|
1117 |
{
|
1118 |
-
"epoch":
|
1119 |
-
"grad_norm": 0.
|
1120 |
-
"learning_rate":
|
1121 |
-
"loss": 0.
|
1122 |
-
"step":
|
1123 |
},
|
1124 |
{
|
1125 |
-
"epoch":
|
1126 |
-
"grad_norm": 0.
|
1127 |
-
"learning_rate":
|
1128 |
-
"loss": 0.
|
1129 |
-
"step":
|
1130 |
},
|
1131 |
{
|
1132 |
-
"epoch":
|
1133 |
-
"grad_norm": 0.
|
1134 |
-
"learning_rate":
|
1135 |
-
"loss": 0.
|
1136 |
-
"step":
|
1137 |
},
|
1138 |
{
|
1139 |
-
"epoch":
|
1140 |
-
"grad_norm": 0.
|
1141 |
-
"learning_rate":
|
1142 |
-
"loss": 0.
|
1143 |
-
"step":
|
1144 |
},
|
1145 |
{
|
1146 |
-
"epoch":
|
1147 |
-
"grad_norm": 0.
|
1148 |
-
"learning_rate":
|
1149 |
-
"loss": 0.
|
1150 |
-
"step":
|
1151 |
},
|
1152 |
{
|
1153 |
-
"epoch":
|
1154 |
-
"grad_norm": 0.
|
1155 |
-
"learning_rate":
|
1156 |
-
"loss": 0.
|
1157 |
-
"step":
|
1158 |
},
|
1159 |
{
|
1160 |
-
"epoch":
|
1161 |
-
"grad_norm": 0.
|
1162 |
-
"learning_rate":
|
1163 |
-
"loss": 0.
|
1164 |
-
"step":
|
1165 |
},
|
1166 |
{
|
1167 |
-
"epoch":
|
1168 |
-
"grad_norm": 0.
|
1169 |
-
"learning_rate":
|
1170 |
-
"loss": 0.
|
1171 |
-
"step":
|
1172 |
},
|
1173 |
{
|
1174 |
-
"epoch":
|
1175 |
-
"grad_norm": 0.
|
1176 |
-
"learning_rate":
|
1177 |
-
"loss": 0.
|
1178 |
-
"step":
|
1179 |
},
|
1180 |
{
|
1181 |
-
"epoch":
|
1182 |
-
"grad_norm": 0.
|
1183 |
-
"learning_rate":
|
1184 |
-
"loss": 0.
|
1185 |
-
"step":
|
1186 |
},
|
1187 |
{
|
1188 |
-
"epoch":
|
1189 |
-
"grad_norm": 0.
|
1190 |
-
"learning_rate":
|
1191 |
-
"loss": 0.
|
1192 |
-
"step":
|
1193 |
},
|
1194 |
{
|
1195 |
-
"epoch":
|
1196 |
-
"grad_norm": 0.
|
1197 |
-
"learning_rate":
|
1198 |
-
"loss": 0.
|
1199 |
-
"step":
|
1200 |
},
|
1201 |
{
|
1202 |
-
"epoch":
|
1203 |
-
"grad_norm": 0.
|
1204 |
-
"learning_rate":
|
1205 |
-
"loss": 0.
|
1206 |
-
"step":
|
1207 |
},
|
1208 |
{
|
1209 |
-
"epoch":
|
1210 |
-
"grad_norm": 0.
|
1211 |
-
"learning_rate":
|
1212 |
-
"loss": 0.
|
1213 |
-
"step":
|
1214 |
},
|
1215 |
{
|
1216 |
-
"epoch":
|
1217 |
-
"grad_norm": 0.
|
1218 |
-
"learning_rate":
|
1219 |
-
"loss": 0.
|
1220 |
-
"step":
|
1221 |
},
|
1222 |
{
|
1223 |
-
"epoch":
|
1224 |
-
"grad_norm": 0.
|
1225 |
-
"learning_rate":
|
1226 |
-
"loss": 0.
|
1227 |
-
"step":
|
1228 |
},
|
1229 |
{
|
1230 |
-
"epoch":
|
1231 |
-
"grad_norm": 0.
|
1232 |
-
"learning_rate":
|
1233 |
-
"loss": 0.
|
1234 |
-
"step":
|
1235 |
},
|
1236 |
{
|
1237 |
-
"epoch":
|
1238 |
-
"grad_norm": 0.
|
1239 |
-
"learning_rate":
|
1240 |
-
"loss": 0.
|
1241 |
-
"step":
|
1242 |
},
|
1243 |
{
|
1244 |
-
"epoch": 1.
|
1245 |
-
"grad_norm": 0.
|
1246 |
-
"learning_rate":
|
1247 |
-
"loss": 0.
|
1248 |
-
"step":
|
1249 |
},
|
1250 |
{
|
1251 |
-
"epoch": 1.
|
1252 |
-
"grad_norm": 0.
|
1253 |
-
"learning_rate":
|
1254 |
-
"loss": 0.
|
1255 |
-
"step":
|
1256 |
},
|
1257 |
{
|
1258 |
-
"epoch": 1.
|
1259 |
-
"grad_norm": 0.
|
1260 |
-
"learning_rate":
|
1261 |
-
"loss": 0.
|
1262 |
-
"step":
|
1263 |
},
|
1264 |
{
|
1265 |
-
"epoch": 1.
|
1266 |
-
"grad_norm": 0.
|
1267 |
-
"learning_rate":
|
1268 |
-
"loss": 0.
|
1269 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1270 |
}
|
1271 |
],
|
1272 |
-
"logging_steps":
|
1273 |
-
"max_steps":
|
1274 |
"num_input_tokens_seen": 0,
|
1275 |
-
"num_train_epochs":
|
1276 |
"save_steps": 200,
|
1277 |
"stateful_callbacks": {
|
1278 |
"TrainerControl": {
|
@@ -1286,8 +2406,8 @@
|
|
1286 |
"attributes": {}
|
1287 |
}
|
1288 |
},
|
1289 |
-
"total_flos":
|
1290 |
-
"train_batch_size":
|
1291 |
"trial_name": null,
|
1292 |
"trial_params": null
|
1293 |
}
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.9293516810895164,
|
5 |
"eval_steps": 500,
|
6 |
+
"global_step": 6800,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
+
"epoch": 0.005674563767910342,
|
13 |
+
"grad_norm": 1.8945719003677368,
|
14 |
+
"learning_rate": 2.830188679245283e-06,
|
15 |
+
"loss": 0.9878,
|
16 |
+
"step": 20
|
17 |
},
|
18 |
{
|
19 |
+
"epoch": 0.011349127535820683,
|
20 |
+
"grad_norm": 0.8699278235435486,
|
21 |
+
"learning_rate": 5.660377358490566e-06,
|
22 |
+
"loss": 0.9338,
|
23 |
+
"step": 40
|
24 |
},
|
25 |
{
|
26 |
+
"epoch": 0.017023691303731027,
|
27 |
+
"grad_norm": 0.9612842798233032,
|
28 |
+
"learning_rate": 8.49056603773585e-06,
|
29 |
+
"loss": 0.8992,
|
30 |
+
"step": 60
|
31 |
},
|
32 |
{
|
33 |
+
"epoch": 0.022698255071641367,
|
34 |
+
"grad_norm": 1.0209581851959229,
|
35 |
+
"learning_rate": 1.1320754716981132e-05,
|
36 |
+
"loss": 0.8802,
|
37 |
+
"step": 80
|
38 |
},
|
39 |
{
|
40 |
+
"epoch": 0.02837281883955171,
|
41 |
+
"grad_norm": 1.1397087574005127,
|
42 |
+
"learning_rate": 1.4150943396226415e-05,
|
43 |
+
"loss": 0.8636,
|
44 |
+
"step": 100
|
45 |
},
|
46 |
{
|
47 |
+
"epoch": 0.034047382607462054,
|
48 |
+
"grad_norm": 1.0688011646270752,
|
49 |
+
"learning_rate": 1.69811320754717e-05,
|
50 |
+
"loss": 0.8589,
|
51 |
+
"step": 120
|
52 |
},
|
53 |
{
|
54 |
+
"epoch": 0.039721946375372394,
|
55 |
+
"grad_norm": 1.0701323747634888,
|
56 |
+
"learning_rate": 1.981132075471698e-05,
|
57 |
+
"loss": 0.8445,
|
58 |
+
"step": 140
|
59 |
},
|
60 |
{
|
61 |
+
"epoch": 0.045396510143282734,
|
62 |
+
"grad_norm": 1.0749995708465576,
|
63 |
+
"learning_rate": 2.2641509433962265e-05,
|
64 |
+
"loss": 0.8438,
|
65 |
+
"step": 160
|
66 |
},
|
67 |
{
|
68 |
+
"epoch": 0.051071073911193074,
|
69 |
+
"grad_norm": 1.2973322868347168,
|
70 |
+
"learning_rate": 2.547169811320755e-05,
|
71 |
+
"loss": 0.8399,
|
72 |
+
"step": 180
|
73 |
},
|
74 |
{
|
75 |
+
"epoch": 0.05674563767910342,
|
76 |
+
"grad_norm": 0.9941120743751526,
|
77 |
+
"learning_rate": 2.830188679245283e-05,
|
78 |
+
"loss": 0.8459,
|
79 |
+
"step": 200
|
80 |
},
|
81 |
{
|
82 |
+
"epoch": 0.06242020144701376,
|
83 |
+
"grad_norm": 1.1092499494552612,
|
84 |
+
"learning_rate": 2.9999898623711896e-05,
|
85 |
+
"loss": 0.8396,
|
86 |
+
"step": 220
|
87 |
},
|
88 |
{
|
89 |
+
"epoch": 0.06809476521492411,
|
90 |
+
"grad_norm": 1.10667085647583,
|
91 |
+
"learning_rate": 2.999875815620755e-05,
|
92 |
+
"loss": 0.8403,
|
93 |
+
"step": 240
|
94 |
},
|
95 |
{
|
96 |
+
"epoch": 0.07376932898283445,
|
97 |
+
"grad_norm": 1.0986227989196777,
|
98 |
+
"learning_rate": 2.999635059750628e-05,
|
99 |
+
"loss": 0.8296,
|
100 |
+
"step": 260
|
101 |
},
|
102 |
{
|
103 |
+
"epoch": 0.07944389275074479,
|
104 |
+
"grad_norm": 0.9648028612136841,
|
105 |
+
"learning_rate": 2.9992676150998032e-05,
|
106 |
+
"loss": 0.8187,
|
107 |
+
"step": 280
|
108 |
},
|
109 |
{
|
110 |
+
"epoch": 0.08511845651865513,
|
111 |
+
"grad_norm": 0.8029258251190186,
|
112 |
+
"learning_rate": 2.998773512709909e-05,
|
113 |
+
"loss": 0.8224,
|
114 |
+
"step": 300
|
115 |
},
|
116 |
{
|
117 |
+
"epoch": 0.09079302028656547,
|
118 |
+
"grad_norm": 0.888502299785614,
|
119 |
+
"learning_rate": 2.9981527943225862e-05,
|
120 |
+
"loss": 0.8178,
|
121 |
+
"step": 320
|
122 |
},
|
123 |
{
|
124 |
+
"epoch": 0.09646758405447581,
|
125 |
+
"grad_norm": 0.7894881963729858,
|
126 |
+
"learning_rate": 2.997405512375964e-05,
|
127 |
+
"loss": 0.8153,
|
128 |
+
"step": 340
|
129 |
},
|
130 |
{
|
131 |
+
"epoch": 0.10214214782238615,
|
132 |
+
"grad_norm": 0.8492247462272644,
|
133 |
+
"learning_rate": 2.996531730000227e-05,
|
134 |
+
"loss": 0.8105,
|
135 |
+
"step": 360
|
136 |
},
|
137 |
{
|
138 |
+
"epoch": 0.1078167115902965,
|
139 |
+
"grad_norm": 0.8247759938240051,
|
140 |
+
"learning_rate": 2.9955315210122842e-05,
|
141 |
+
"loss": 0.8,
|
142 |
+
"step": 380
|
143 |
},
|
144 |
{
|
145 |
+
"epoch": 0.11349127535820684,
|
146 |
+
"grad_norm": 0.8270812034606934,
|
147 |
+
"learning_rate": 2.99440496990953e-05,
|
148 |
+
"loss": 0.802,
|
149 |
+
"step": 400
|
150 |
},
|
151 |
{
|
152 |
+
"epoch": 0.11916583912611718,
|
153 |
+
"grad_norm": 0.8336136937141418,
|
154 |
+
"learning_rate": 2.9931521718627107e-05,
|
155 |
+
"loss": 0.7932,
|
156 |
+
"step": 420
|
157 |
},
|
158 |
{
|
159 |
+
"epoch": 0.12484040289402752,
|
160 |
+
"grad_norm": 0.7927630543708801,
|
161 |
+
"learning_rate": 2.991773232707879e-05,
|
162 |
+
"loss": 0.7903,
|
163 |
+
"step": 440
|
164 |
},
|
165 |
{
|
166 |
+
"epoch": 0.13051496666193788,
|
167 |
+
"grad_norm": 0.8075955510139465,
|
168 |
+
"learning_rate": 2.9902682689374578e-05,
|
169 |
+
"loss": 0.7897,
|
170 |
+
"step": 460
|
171 |
},
|
172 |
{
|
173 |
+
"epoch": 0.13618953042984822,
|
174 |
+
"grad_norm": 0.7381598353385925,
|
175 |
+
"learning_rate": 2.9886374076903945e-05,
|
176 |
+
"loss": 0.785,
|
177 |
+
"step": 480
|
178 |
},
|
179 |
{
|
180 |
+
"epoch": 0.14186409419775856,
|
181 |
+
"grad_norm": 0.799022912979126,
|
182 |
+
"learning_rate": 2.986880786741426e-05,
|
183 |
+
"loss": 0.7862,
|
184 |
+
"step": 500
|
185 |
},
|
186 |
{
|
187 |
+
"epoch": 0.1475386579656689,
|
188 |
+
"grad_norm": 0.7515665292739868,
|
189 |
+
"learning_rate": 2.9849985544894333e-05,
|
190 |
+
"loss": 0.7845,
|
191 |
+
"step": 520
|
192 |
},
|
193 |
{
|
194 |
+
"epoch": 0.15321322173357924,
|
195 |
+
"grad_norm": 0.8161646723747253,
|
196 |
+
"learning_rate": 2.982990869944908e-05,
|
197 |
+
"loss": 0.7745,
|
198 |
+
"step": 540
|
199 |
},
|
200 |
{
|
201 |
+
"epoch": 0.15888778550148958,
|
202 |
+
"grad_norm": 0.671816885471344,
|
203 |
+
"learning_rate": 2.9808579027165204e-05,
|
204 |
+
"loss": 0.7786,
|
205 |
+
"step": 560
|
206 |
},
|
207 |
{
|
208 |
+
"epoch": 0.16456234926939992,
|
209 |
+
"grad_norm": 0.7310769557952881,
|
210 |
+
"learning_rate": 2.978599832996788e-05,
|
211 |
+
"loss": 0.7742,
|
212 |
+
"step": 580
|
213 |
},
|
214 |
{
|
215 |
+
"epoch": 0.17023691303731026,
|
216 |
+
"grad_norm": 0.7568747401237488,
|
217 |
+
"learning_rate": 2.9762168515468548e-05,
|
218 |
+
"loss": 0.7691,
|
219 |
+
"step": 600
|
220 |
},
|
221 |
{
|
222 |
+
"epoch": 0.1759114768052206,
|
223 |
+
"grad_norm": 0.6345218420028687,
|
224 |
+
"learning_rate": 2.973709159680375e-05,
|
225 |
+
"loss": 0.7695,
|
226 |
+
"step": 620
|
227 |
},
|
228 |
{
|
229 |
+
"epoch": 0.18158604057313094,
|
230 |
+
"grad_norm": 0.7218050360679626,
|
231 |
+
"learning_rate": 2.9710769692465073e-05,
|
232 |
+
"loss": 0.7681,
|
233 |
+
"step": 640
|
234 |
},
|
235 |
{
|
236 |
+
"epoch": 0.18726060434104128,
|
237 |
+
"grad_norm": 0.7665095925331116,
|
238 |
+
"learning_rate": 2.9683205026120163e-05,
|
239 |
+
"loss": 0.7667,
|
240 |
+
"step": 660
|
241 |
},
|
242 |
{
|
243 |
+
"epoch": 0.19293516810895162,
|
244 |
+
"grad_norm": 0.6717973947525024,
|
245 |
+
"learning_rate": 2.9654399926424884e-05,
|
246 |
+
"loss": 0.7684,
|
247 |
+
"step": 680
|
248 |
},
|
249 |
{
|
250 |
+
"epoch": 0.19860973187686196,
|
251 |
+
"grad_norm": 0.7454754114151001,
|
252 |
+
"learning_rate": 2.9624356826826577e-05,
|
253 |
+
"loss": 0.7622,
|
254 |
+
"step": 700
|
255 |
},
|
256 |
{
|
257 |
+
"epoch": 0.2042842956447723,
|
258 |
+
"grad_norm": 0.6865426898002625,
|
259 |
+
"learning_rate": 2.9593078265358498e-05,
|
260 |
+
"loss": 0.761,
|
261 |
+
"step": 720
|
262 |
},
|
263 |
{
|
264 |
+
"epoch": 0.20995885941268266,
|
265 |
+
"grad_norm": 0.7075285315513611,
|
266 |
+
"learning_rate": 2.956056688442541e-05,
|
267 |
+
"loss": 0.7578,
|
268 |
+
"step": 740
|
269 |
},
|
270 |
{
|
271 |
+
"epoch": 0.215633423180593,
|
272 |
+
"grad_norm": 0.7438149452209473,
|
273 |
+
"learning_rate": 2.9526825430580337e-05,
|
274 |
+
"loss": 0.7571,
|
275 |
+
"step": 760
|
276 |
},
|
277 |
{
|
278 |
+
"epoch": 0.22130798694850334,
|
279 |
+
"grad_norm": 0.6830400228500366,
|
280 |
+
"learning_rate": 2.949185675429254e-05,
|
281 |
+
"loss": 0.759,
|
282 |
+
"step": 780
|
283 |
},
|
284 |
{
|
285 |
+
"epoch": 0.22698255071641368,
|
286 |
+
"grad_norm": 0.7147162556648254,
|
287 |
+
"learning_rate": 2.9455663809706725e-05,
|
288 |
+
"loss": 0.756,
|
289 |
+
"step": 800
|
290 |
},
|
291 |
{
|
292 |
+
"epoch": 0.23265711448432402,
|
293 |
+
"grad_norm": 0.7116013765335083,
|
294 |
+
"learning_rate": 2.9418249654393443e-05,
|
295 |
+
"loss": 0.7538,
|
296 |
+
"step": 820
|
297 |
},
|
298 |
{
|
299 |
+
"epoch": 0.23833167825223436,
|
300 |
+
"grad_norm": 0.64736407995224,
|
301 |
+
"learning_rate": 2.9379617449090847e-05,
|
302 |
+
"loss": 0.7513,
|
303 |
+
"step": 840
|
304 |
},
|
305 |
{
|
306 |
+
"epoch": 0.2440062420201447,
|
307 |
+
"grad_norm": 0.6453843116760254,
|
308 |
+
"learning_rate": 2.93397704574376e-05,
|
309 |
+
"loss": 0.7538,
|
310 |
+
"step": 860
|
311 |
},
|
312 |
{
|
313 |
+
"epoch": 0.24968080578805504,
|
314 |
+
"grad_norm": 0.6253499388694763,
|
315 |
+
"learning_rate": 2.929871204569722e-05,
|
316 |
+
"loss": 0.7463,
|
317 |
+
"step": 880
|
318 |
},
|
319 |
{
|
320 |
+
"epoch": 0.2553553695559654,
|
321 |
+
"grad_norm": 0.6677010655403137,
|
322 |
+
"learning_rate": 2.9256445682473683e-05,
|
323 |
+
"loss": 0.7419,
|
324 |
+
"step": 900
|
325 |
},
|
326 |
{
|
327 |
+
"epoch": 0.26102993332387575,
|
328 |
+
"grad_norm": 0.7070403695106506,
|
329 |
+
"learning_rate": 2.9212974938418385e-05,
|
330 |
+
"loss": 0.7449,
|
331 |
+
"step": 920
|
332 |
},
|
333 |
{
|
334 |
+
"epoch": 0.26670449709178606,
|
335 |
+
"grad_norm": 0.6784743070602417,
|
336 |
+
"learning_rate": 2.9168303485928495e-05,
|
337 |
+
"loss": 0.7453,
|
338 |
+
"step": 940
|
339 |
},
|
340 |
{
|
341 |
+
"epoch": 0.27237906085969643,
|
342 |
+
"grad_norm": 0.6076740026473999,
|
343 |
+
"learning_rate": 2.912243509883673e-05,
|
344 |
+
"loss": 0.7457,
|
345 |
+
"step": 960
|
346 |
},
|
347 |
{
|
348 |
+
"epoch": 0.27805362462760674,
|
349 |
+
"grad_norm": 0.6722409129142761,
|
350 |
+
"learning_rate": 2.9075373652092535e-05,
|
351 |
+
"loss": 0.7373,
|
352 |
+
"step": 980
|
353 |
},
|
354 |
{
|
355 |
+
"epoch": 0.2837281883955171,
|
356 |
+
"grad_norm": 0.7188818454742432,
|
357 |
+
"learning_rate": 2.9027123121434714e-05,
|
358 |
+
"loss": 0.7343,
|
359 |
+
"step": 1000
|
360 |
},
|
361 |
{
|
362 |
+
"epoch": 0.2894027521634274,
|
363 |
+
"grad_norm": 0.657289981842041,
|
364 |
+
"learning_rate": 2.897768758305558e-05,
|
365 |
+
"loss": 0.7336,
|
366 |
+
"step": 1020
|
367 |
},
|
368 |
{
|
369 |
+
"epoch": 0.2950773159313378,
|
370 |
+
"grad_norm": 0.6076385378837585,
|
371 |
+
"learning_rate": 2.892707121325658e-05,
|
372 |
+
"loss": 0.7331,
|
373 |
+
"step": 1040
|
374 |
},
|
375 |
{
|
376 |
+
"epoch": 0.3007518796992481,
|
377 |
+
"grad_norm": 0.6217896342277527,
|
378 |
+
"learning_rate": 2.8875278288095507e-05,
|
379 |
+
"loss": 0.7339,
|
380 |
+
"step": 1060
|
381 |
},
|
382 |
{
|
383 |
+
"epoch": 0.30642644346715847,
|
384 |
+
"grad_norm": 0.6453694701194763,
|
385 |
+
"learning_rate": 2.882231318302523e-05,
|
386 |
+
"loss": 0.7334,
|
387 |
+
"step": 1080
|
388 |
},
|
389 |
{
|
390 |
+
"epoch": 0.3121010072350688,
|
391 |
+
"grad_norm": 0.6069263219833374,
|
392 |
+
"learning_rate": 2.8768180372524093e-05,
|
393 |
+
"loss": 0.734,
|
394 |
+
"step": 1100
|
395 |
},
|
396 |
{
|
397 |
+
"epoch": 0.31777557100297915,
|
398 |
+
"grad_norm": 0.6342785358428955,
|
399 |
+
"learning_rate": 2.8712884429717873e-05,
|
400 |
+
"loss": 0.7254,
|
401 |
+
"step": 1120
|
402 |
},
|
403 |
{
|
404 |
+
"epoch": 0.32345013477088946,
|
405 |
+
"grad_norm": 0.5936433672904968,
|
406 |
+
"learning_rate": 2.8656430025993464e-05,
|
407 |
+
"loss": 0.7232,
|
408 |
+
"step": 1140
|
409 |
},
|
410 |
{
|
411 |
+
"epoch": 0.32912469853879983,
|
412 |
+
"grad_norm": 0.5988269448280334,
|
413 |
+
"learning_rate": 2.8598821930604252e-05,
|
414 |
+
"loss": 0.726,
|
415 |
+
"step": 1160
|
416 |
},
|
417 |
{
|
418 |
+
"epoch": 0.3347992623067102,
|
419 |
+
"grad_norm": 0.6247944235801697,
|
420 |
+
"learning_rate": 2.8540065010267183e-05,
|
421 |
+
"loss": 0.729,
|
422 |
+
"step": 1180
|
423 |
},
|
424 |
{
|
425 |
+
"epoch": 0.3404738260746205,
|
426 |
+
"grad_norm": 0.6017037034034729,
|
427 |
+
"learning_rate": 2.848016422875164e-05,
|
428 |
+
"loss": 0.7216,
|
429 |
+
"step": 1200
|
430 |
},
|
431 |
{
|
432 |
+
"epoch": 0.3461483898425309,
|
433 |
+
"grad_norm": 0.7368952631950378,
|
434 |
+
"learning_rate": 2.84191246464601e-05,
|
435 |
+
"loss": 0.7331,
|
436 |
+
"step": 1220
|
437 |
},
|
438 |
{
|
439 |
+
"epoch": 0.3518229536104412,
|
440 |
+
"grad_norm": 0.6655734777450562,
|
441 |
+
"learning_rate": 2.835695142000064e-05,
|
442 |
+
"loss": 0.7233,
|
443 |
+
"step": 1240
|
444 |
},
|
445 |
{
|
446 |
+
"epoch": 0.35749751737835156,
|
447 |
+
"grad_norm": 0.6325275301933289,
|
448 |
+
"learning_rate": 2.8293649801751288e-05,
|
449 |
+
"loss": 0.7208,
|
450 |
+
"step": 1260
|
451 |
},
|
452 |
{
|
453 |
+
"epoch": 0.36317208114626187,
|
454 |
+
"grad_norm": 0.6046157479286194,
|
455 |
+
"learning_rate": 2.822922513941634e-05,
|
456 |
+
"loss": 0.7156,
|
457 |
+
"step": 1280
|
458 |
},
|
459 |
{
|
460 |
+
"epoch": 0.36884664491417224,
|
461 |
+
"grad_norm": 0.6081031560897827,
|
462 |
+
"learning_rate": 2.816368287557454e-05,
|
463 |
+
"loss": 0.722,
|
464 |
+
"step": 1300
|
465 |
},
|
466 |
{
|
467 |
+
"epoch": 0.37452120868208255,
|
468 |
+
"grad_norm": 0.6153631806373596,
|
469 |
+
"learning_rate": 2.809702854721934e-05,
|
470 |
+
"loss": 0.7171,
|
471 |
+
"step": 1320
|
472 |
},
|
473 |
{
|
474 |
+
"epoch": 0.3801957724499929,
|
475 |
+
"grad_norm": 0.6361656188964844,
|
476 |
+
"learning_rate": 2.8029267785291092e-05,
|
477 |
+
"loss": 0.7134,
|
478 |
+
"step": 1340
|
479 |
},
|
480 |
{
|
481 |
+
"epoch": 0.38587033621790323,
|
482 |
+
"grad_norm": 0.6033869981765747,
|
483 |
+
"learning_rate": 2.796040631420139e-05,
|
484 |
+
"loss": 0.7171,
|
485 |
+
"step": 1360
|
486 |
},
|
487 |
{
|
488 |
+
"epoch": 0.3915448999858136,
|
489 |
+
"grad_norm": 0.6300106644630432,
|
490 |
+
"learning_rate": 2.789044995134944e-05,
|
491 |
+
"loss": 0.7139,
|
492 |
+
"step": 1380
|
493 |
},
|
494 |
{
|
495 |
+
"epoch": 0.3972194637537239,
|
496 |
+
"grad_norm": 0.5989068150520325,
|
497 |
+
"learning_rate": 2.781940460663062e-05,
|
498 |
+
"loss": 0.7142,
|
499 |
+
"step": 1400
|
500 |
},
|
501 |
{
|
502 |
+
"epoch": 0.4028940275216343,
|
503 |
+
"grad_norm": 0.5790150761604309,
|
504 |
+
"learning_rate": 2.774727628193721e-05,
|
505 |
+
"loss": 0.7126,
|
506 |
+
"step": 1420
|
507 |
},
|
508 |
{
|
509 |
+
"epoch": 0.4085685912895446,
|
510 |
+
"grad_norm": 0.5948804616928101,
|
511 |
+
"learning_rate": 2.7674071070651378e-05,
|
512 |
+
"loss": 0.7103,
|
513 |
+
"step": 1440
|
514 |
},
|
515 |
{
|
516 |
+
"epoch": 0.41424315505745496,
|
517 |
+
"grad_norm": 0.6838712096214294,
|
518 |
+
"learning_rate": 2.7599795157130364e-05,
|
519 |
+
"loss": 0.7169,
|
520 |
+
"step": 1460
|
521 |
},
|
522 |
{
|
523 |
+
"epoch": 0.4199177188253653,
|
524 |
+
"grad_norm": 0.6502018570899963,
|
525 |
+
"learning_rate": 2.7524454816184076e-05,
|
526 |
+
"loss": 0.7094,
|
527 |
+
"step": 1480
|
528 |
},
|
529 |
{
|
530 |
+
"epoch": 0.42559228259327564,
|
531 |
+
"grad_norm": 0.6322967410087585,
|
532 |
+
"learning_rate": 2.7448056412544956e-05,
|
533 |
+
"loss": 0.7134,
|
534 |
+
"step": 1500
|
535 |
},
|
536 |
{
|
537 |
+
"epoch": 0.431266846361186,
|
538 |
+
"grad_norm": 0.5761287212371826,
|
539 |
+
"learning_rate": 2.7370606400330334e-05,
|
540 |
+
"loss": 0.7067,
|
541 |
+
"step": 1520
|
542 |
},
|
543 |
{
|
544 |
+
"epoch": 0.4369414101290963,
|
545 |
+
"grad_norm": 0.6147580742835999,
|
546 |
+
"learning_rate": 2.729211132249713e-05,
|
547 |
+
"loss": 0.7078,
|
548 |
+
"step": 1540
|
549 |
},
|
550 |
{
|
551 |
+
"epoch": 0.4426159738970067,
|
552 |
+
"grad_norm": 0.6231666207313538,
|
553 |
+
"learning_rate": 2.7212577810289157e-05,
|
554 |
+
"loss": 0.7066,
|
555 |
+
"step": 1560
|
556 |
},
|
557 |
{
|
558 |
+
"epoch": 0.448290537664917,
|
559 |
+
"grad_norm": 0.5739862322807312,
|
560 |
+
"learning_rate": 2.713201258267689e-05,
|
561 |
+
"loss": 0.708,
|
562 |
+
"step": 1580
|
563 |
},
|
564 |
{
|
565 |
+
"epoch": 0.45396510143282737,
|
566 |
+
"grad_norm": 0.7059602737426758,
|
567 |
+
"learning_rate": 2.7050422445789843e-05,
|
568 |
+
"loss": 0.7043,
|
569 |
+
"step": 1600
|
570 |
},
|
571 |
{
|
572 |
+
"epoch": 0.4596396652007377,
|
573 |
+
"grad_norm": 0.6156895160675049,
|
574 |
+
"learning_rate": 2.696781429234162e-05,
|
575 |
+
"loss": 0.7118,
|
576 |
+
"step": 1620
|
577 |
},
|
578 |
{
|
579 |
+
"epoch": 0.46531422896864805,
|
580 |
+
"grad_norm": 0.5444714426994324,
|
581 |
+
"learning_rate": 2.6884195101047567e-05,
|
582 |
+
"loss": 0.7031,
|
583 |
+
"step": 1640
|
584 |
},
|
585 |
{
|
586 |
+
"epoch": 0.47098879273655836,
|
587 |
+
"grad_norm": 0.6431369185447693,
|
588 |
+
"learning_rate": 2.6799571936035284e-05,
|
589 |
+
"loss": 0.7056,
|
590 |
+
"step": 1660
|
591 |
},
|
592 |
{
|
593 |
+
"epoch": 0.4766633565044687,
|
594 |
+
"grad_norm": 0.6375367641448975,
|
595 |
+
"learning_rate": 2.671395194624779e-05,
|
596 |
+
"loss": 0.6991,
|
597 |
+
"step": 1680
|
598 |
},
|
599 |
{
|
600 |
+
"epoch": 0.48233792027237904,
|
601 |
+
"grad_norm": 0.6311667561531067,
|
602 |
+
"learning_rate": 2.6627342364839604e-05,
|
603 |
+
"loss": 0.6991,
|
604 |
+
"step": 1700
|
605 |
},
|
606 |
{
|
607 |
+
"epoch": 0.4880124840402894,
|
608 |
+
"grad_norm": 0.580328643321991,
|
609 |
+
"learning_rate": 2.6539750508565683e-05,
|
610 |
+
"loss": 0.7027,
|
611 |
+
"step": 1720
|
612 |
},
|
613 |
{
|
614 |
+
"epoch": 0.4936870478081997,
|
615 |
+
"grad_norm": 0.6254743933677673,
|
616 |
+
"learning_rate": 2.6451183777163316e-05,
|
617 |
+
"loss": 0.6977,
|
618 |
+
"step": 1740
|
619 |
},
|
620 |
{
|
621 |
+
"epoch": 0.4993616115761101,
|
622 |
+
"grad_norm": 0.8747753500938416,
|
623 |
+
"learning_rate": 2.636164965272699e-05,
|
624 |
+
"loss": 0.6974,
|
625 |
+
"step": 1760
|
626 |
},
|
627 |
{
|
628 |
+
"epoch": 0.5050361753440205,
|
629 |
+
"grad_norm": 0.5931680798530579,
|
630 |
+
"learning_rate": 2.6271155699076305e-05,
|
631 |
+
"loss": 0.7001,
|
632 |
+
"step": 1780
|
633 |
},
|
634 |
{
|
635 |
+
"epoch": 0.5107107391119308,
|
636 |
+
"grad_norm": 0.5763223767280579,
|
637 |
+
"learning_rate": 2.6179709561116983e-05,
|
638 |
+
"loss": 0.7023,
|
639 |
+
"step": 1800
|
640 |
},
|
641 |
{
|
642 |
+
"epoch": 0.5163853028798411,
|
643 |
+
"grad_norm": 0.5211492776870728,
|
644 |
+
"learning_rate": 2.6087318964195032e-05,
|
645 |
+
"loss": 0.6957,
|
646 |
+
"step": 1820
|
647 |
},
|
648 |
{
|
649 |
+
"epoch": 0.5220598666477515,
|
650 |
+
"grad_norm": 0.5684000253677368,
|
651 |
+
"learning_rate": 2.59939917134441e-05,
|
652 |
+
"loss": 0.6916,
|
653 |
+
"step": 1840
|
654 |
},
|
655 |
{
|
656 |
+
"epoch": 0.5277344304156618,
|
657 |
+
"grad_norm": 0.6029589176177979,
|
658 |
+
"learning_rate": 2.5899735693126113e-05,
|
659 |
+
"loss": 0.6942,
|
660 |
+
"step": 1860
|
661 |
},
|
662 |
{
|
663 |
+
"epoch": 0.5334089941835721,
|
664 |
+
"grad_norm": 0.5765926837921143,
|
665 |
+
"learning_rate": 2.5804558865965206e-05,
|
666 |
+
"loss": 0.6973,
|
667 |
+
"step": 1880
|
668 |
},
|
669 |
{
|
670 |
+
"epoch": 0.5390835579514824,
|
671 |
+
"grad_norm": 0.5227144956588745,
|
672 |
+
"learning_rate": 2.5708469272475044e-05,
|
673 |
+
"loss": 0.6929,
|
674 |
+
"step": 1900
|
675 |
},
|
676 |
{
|
677 |
+
"epoch": 0.5447581217193929,
|
678 |
+
"grad_norm": 0.6175386309623718,
|
679 |
+
"learning_rate": 2.5611475030279546e-05,
|
680 |
+
"loss": 0.6908,
|
681 |
+
"step": 1920
|
682 |
},
|
683 |
{
|
684 |
+
"epoch": 0.5504326854873032,
|
685 |
+
"grad_norm": 0.5724866986274719,
|
686 |
+
"learning_rate": 2.5513584333427125e-05,
|
687 |
+
"loss": 0.6893,
|
688 |
+
"step": 1940
|
689 |
},
|
690 |
{
|
691 |
+
"epoch": 0.5561072492552135,
|
692 |
+
"grad_norm": 0.5964395403862,
|
693 |
+
"learning_rate": 2.541480545169846e-05,
|
694 |
+
"loss": 0.6944,
|
695 |
+
"step": 1960
|
696 |
},
|
697 |
{
|
698 |
+
"epoch": 0.5617818130231238,
|
699 |
+
"grad_norm": 0.6019209027290344,
|
700 |
+
"learning_rate": 2.5315146729907827e-05,
|
701 |
+
"loss": 0.6899,
|
702 |
+
"step": 1980
|
703 |
},
|
704 |
{
|
705 |
+
"epoch": 0.5674563767910342,
|
706 |
+
"grad_norm": 0.6371375918388367,
|
707 |
+
"learning_rate": 2.521461658719819e-05,
|
708 |
+
"loss": 0.6904,
|
709 |
+
"step": 2000
|
710 |
},
|
711 |
{
|
712 |
+
"epoch": 0.5731309405589445,
|
713 |
+
"grad_norm": 0.5762882232666016,
|
714 |
+
"learning_rate": 2.5113223516329924e-05,
|
715 |
+
"loss": 0.6887,
|
716 |
+
"step": 2020
|
717 |
},
|
718 |
{
|
719 |
+
"epoch": 0.5788055043268548,
|
720 |
+
"grad_norm": 0.591663122177124,
|
721 |
+
"learning_rate": 2.501097608296334e-05,
|
722 |
+
"loss": 0.6894,
|
723 |
+
"step": 2040
|
724 |
},
|
725 |
{
|
726 |
+
"epoch": 0.5844800680947652,
|
727 |
+
"grad_norm": 0.5833630561828613,
|
728 |
+
"learning_rate": 2.4907882924935072e-05,
|
729 |
+
"loss": 0.6866,
|
730 |
+
"step": 2060
|
731 |
},
|
732 |
{
|
733 |
+
"epoch": 0.5901546318626756,
|
734 |
+
"grad_norm": 0.5615355968475342,
|
735 |
+
"learning_rate": 2.4803952751528363e-05,
|
736 |
+
"loss": 0.6927,
|
737 |
+
"step": 2080
|
738 |
},
|
739 |
{
|
740 |
+
"epoch": 0.5958291956305859,
|
741 |
+
"grad_norm": 0.5507014989852905,
|
742 |
+
"learning_rate": 2.4699194342737295e-05,
|
743 |
+
"loss": 0.6934,
|
744 |
+
"step": 2100
|
745 |
},
|
746 |
{
|
747 |
+
"epoch": 0.6015037593984962,
|
748 |
+
"grad_norm": 0.5132161974906921,
|
749 |
+
"learning_rate": 2.459361654852505e-05,
|
750 |
+
"loss": 0.688,
|
751 |
+
"step": 2120
|
752 |
},
|
753 |
{
|
754 |
+
"epoch": 0.6071783231664066,
|
755 |
+
"grad_norm": 0.5238850116729736,
|
756 |
+
"learning_rate": 2.4487228288076293e-05,
|
757 |
+
"loss": 0.6804,
|
758 |
+
"step": 2140
|
759 |
},
|
760 |
{
|
761 |
+
"epoch": 0.6128528869343169,
|
762 |
+
"grad_norm": 0.5849164724349976,
|
763 |
+
"learning_rate": 2.438003854904366e-05,
|
764 |
+
"loss": 0.6911,
|
765 |
+
"step": 2160
|
766 |
},
|
767 |
{
|
768 |
+
"epoch": 0.6185274507022273,
|
769 |
+
"grad_norm": 0.5290674567222595,
|
770 |
+
"learning_rate": 2.4272056386788485e-05,
|
771 |
+
"loss": 0.6838,
|
772 |
+
"step": 2180
|
773 |
},
|
774 |
{
|
775 |
+
"epoch": 0.6242020144701376,
|
776 |
+
"grad_norm": 0.5804121494293213,
|
777 |
+
"learning_rate": 2.4163290923615814e-05,
|
778 |
+
"loss": 0.6894,
|
779 |
+
"step": 2200
|
780 |
},
|
781 |
{
|
782 |
+
"epoch": 0.629876578238048,
|
783 |
+
"grad_norm": 0.5559779405593872,
|
784 |
+
"learning_rate": 2.4053751348003757e-05,
|
785 |
+
"loss": 0.6859,
|
786 |
+
"step": 2220
|
787 |
},
|
788 |
{
|
789 |
+
"epoch": 0.6355511420059583,
|
790 |
+
"grad_norm": 0.5486791133880615,
|
791 |
+
"learning_rate": 2.394344691382723e-05,
|
792 |
+
"loss": 0.6836,
|
793 |
+
"step": 2240
|
794 |
},
|
795 |
{
|
796 |
+
"epoch": 0.6412257057738686,
|
797 |
+
"grad_norm": 0.5544127225875854,
|
798 |
+
"learning_rate": 2.3832386939576214e-05,
|
799 |
+
"loss": 0.681,
|
800 |
+
"step": 2260
|
801 |
},
|
802 |
{
|
803 |
+
"epoch": 0.6469002695417789,
|
804 |
+
"grad_norm": 0.5256103277206421,
|
805 |
+
"learning_rate": 2.3720580807568513e-05,
|
806 |
+
"loss": 0.6823,
|
807 |
+
"step": 2280
|
808 |
},
|
809 |
{
|
810 |
+
"epoch": 0.6525748333096894,
|
811 |
+
"grad_norm": 0.5488288402557373,
|
812 |
+
"learning_rate": 2.3608037963157142e-05,
|
813 |
+
"loss": 0.6818,
|
814 |
+
"step": 2300
|
815 |
},
|
816 |
{
|
817 |
+
"epoch": 0.6582493970775997,
|
818 |
+
"grad_norm": 0.5254908204078674,
|
819 |
+
"learning_rate": 2.3494767913932393e-05,
|
820 |
+
"loss": 0.6774,
|
821 |
+
"step": 2320
|
822 |
},
|
823 |
{
|
824 |
+
"epoch": 0.66392396084551,
|
825 |
+
"grad_norm": 0.5880591869354248,
|
826 |
+
"learning_rate": 2.338078022891864e-05,
|
827 |
+
"loss": 0.6795,
|
828 |
+
"step": 2340
|
829 |
},
|
830 |
{
|
831 |
+
"epoch": 0.6695985246134204,
|
832 |
+
"grad_norm": 0.5331950783729553,
|
833 |
+
"learning_rate": 2.3266084537765924e-05,
|
834 |
+
"loss": 0.6777,
|
835 |
+
"step": 2360
|
836 |
},
|
837 |
{
|
838 |
+
"epoch": 0.6752730883813307,
|
839 |
+
"grad_norm": 0.5736955404281616,
|
840 |
+
"learning_rate": 2.3150690529936475e-05,
|
841 |
+
"loss": 0.6792,
|
842 |
+
"step": 2380
|
843 |
},
|
844 |
{
|
845 |
+
"epoch": 0.680947652149241,
|
846 |
+
"grad_norm": 0.5705032348632812,
|
847 |
+
"learning_rate": 2.303460795388613e-05,
|
848 |
+
"loss": 0.6736,
|
849 |
+
"step": 2400
|
850 |
},
|
851 |
{
|
852 |
+
"epoch": 0.6866222159171513,
|
853 |
+
"grad_norm": 0.569355845451355,
|
854 |
+
"learning_rate": 2.2917846616240784e-05,
|
855 |
+
"loss": 0.6767,
|
856 |
+
"step": 2420
|
857 |
},
|
858 |
{
|
859 |
+
"epoch": 0.6922967796850618,
|
860 |
+
"grad_norm": 1.2819143533706665,
|
861 |
+
"learning_rate": 2.2800416380967952e-05,
|
862 |
+
"loss": 0.6772,
|
863 |
+
"step": 2440
|
864 |
},
|
865 |
{
|
866 |
+
"epoch": 0.6979713434529721,
|
867 |
+
"grad_norm": 0.5238373279571533,
|
868 |
+
"learning_rate": 2.268232716854343e-05,
|
869 |
+
"loss": 0.674,
|
870 |
+
"step": 2460
|
871 |
},
|
872 |
{
|
873 |
+
"epoch": 0.7036459072208824,
|
874 |
+
"grad_norm": 0.5886688828468323,
|
875 |
+
"learning_rate": 2.2563588955113246e-05,
|
876 |
+
"loss": 0.6757,
|
877 |
+
"step": 2480
|
878 |
},
|
879 |
{
|
880 |
+
"epoch": 0.7093204709887927,
|
881 |
+
"grad_norm": 0.5450348854064941,
|
882 |
+
"learning_rate": 2.244421177165085e-05,
|
883 |
+
"loss": 0.6691,
|
884 |
+
"step": 2500
|
885 |
},
|
886 |
{
|
887 |
+
"epoch": 0.7149950347567031,
|
888 |
+
"grad_norm": 0.5553733706474304,
|
889 |
+
"learning_rate": 2.232420570310974e-05,
|
890 |
+
"loss": 0.6751,
|
891 |
+
"step": 2520
|
892 |
},
|
893 |
{
|
894 |
+
"epoch": 0.7206695985246134,
|
895 |
+
"grad_norm": 0.5076789259910583,
|
896 |
+
"learning_rate": 2.2203580887571423e-05,
|
897 |
+
"loss": 0.6739,
|
898 |
+
"step": 2540
|
899 |
},
|
900 |
{
|
901 |
+
"epoch": 0.7263441622925237,
|
902 |
+
"grad_norm": 0.5153952240943909,
|
903 |
+
"learning_rate": 2.2082347515389027e-05,
|
904 |
+
"loss": 0.6734,
|
905 |
+
"step": 2560
|
906 |
},
|
907 |
{
|
908 |
+
"epoch": 0.732018726060434,
|
909 |
+
"grad_norm": 0.5176730155944824,
|
910 |
+
"learning_rate": 2.1960515828326372e-05,
|
911 |
+
"loss": 0.6706,
|
912 |
+
"step": 2580
|
913 |
},
|
914 |
{
|
915 |
+
"epoch": 0.7376932898283445,
|
916 |
+
"grad_norm": 0.526030421257019,
|
917 |
+
"learning_rate": 2.1838096118692768e-05,
|
918 |
+
"loss": 0.6694,
|
919 |
+
"step": 2600
|
920 |
},
|
921 |
{
|
922 |
+
"epoch": 0.7433678535962548,
|
923 |
+
"grad_norm": 0.6030652523040771,
|
924 |
+
"learning_rate": 2.1715098728473518e-05,
|
925 |
+
"loss": 0.6707,
|
926 |
+
"step": 2620
|
927 |
},
|
928 |
{
|
929 |
+
"epoch": 0.7490424173641651,
|
930 |
+
"grad_norm": 0.6607082486152649,
|
931 |
+
"learning_rate": 2.1591534048456225e-05,
|
932 |
+
"loss": 0.6668,
|
933 |
+
"step": 2640
|
934 |
},
|
935 |
{
|
936 |
+
"epoch": 0.7547169811320755,
|
937 |
+
"grad_norm": 0.5300272107124329,
|
938 |
+
"learning_rate": 2.1467412517352996e-05,
|
939 |
+
"loss": 0.6696,
|
940 |
+
"step": 2660
|
941 |
},
|
942 |
{
|
943 |
+
"epoch": 0.7603915448999858,
|
944 |
+
"grad_norm": 0.5344169735908508,
|
945 |
+
"learning_rate": 2.1342744620918568e-05,
|
946 |
+
"loss": 0.6736,
|
947 |
+
"step": 2680
|
948 |
},
|
949 |
{
|
950 |
+
"epoch": 0.7660661086678962,
|
951 |
+
"grad_norm": 0.5058417916297913,
|
952 |
+
"learning_rate": 2.121754089106448e-05,
|
953 |
+
"loss": 0.6681,
|
954 |
+
"step": 2700
|
955 |
},
|
956 |
{
|
957 |
+
"epoch": 0.7717406724358065,
|
958 |
+
"grad_norm": 0.5440433621406555,
|
959 |
+
"learning_rate": 2.1091811904969344e-05,
|
960 |
+
"loss": 0.6702,
|
961 |
+
"step": 2720
|
962 |
},
|
963 |
{
|
964 |
+
"epoch": 0.7774152362037169,
|
965 |
+
"grad_norm": 0.5361486077308655,
|
966 |
+
"learning_rate": 2.096556828418528e-05,
|
967 |
+
"loss": 0.6686,
|
968 |
+
"step": 2740
|
969 |
},
|
970 |
{
|
971 |
+
"epoch": 0.7830897999716272,
|
972 |
+
"grad_norm": 0.6350403428077698,
|
973 |
+
"learning_rate": 2.0838820693740603e-05,
|
974 |
+
"loss": 0.6678,
|
975 |
+
"step": 2760
|
976 |
},
|
977 |
{
|
978 |
+
"epoch": 0.7887643637395375,
|
979 |
+
"grad_norm": 0.5326098203659058,
|
980 |
+
"learning_rate": 2.0711579841238875e-05,
|
981 |
+
"loss": 0.6711,
|
982 |
+
"step": 2780
|
983 |
},
|
984 |
{
|
985 |
+
"epoch": 0.7944389275074478,
|
986 |
+
"grad_norm": 0.540676474571228,
|
987 |
+
"learning_rate": 2.058385647595429e-05,
|
988 |
+
"loss": 0.6705,
|
989 |
+
"step": 2800
|
990 |
},
|
991 |
{
|
992 |
+
"epoch": 0.8001134912753582,
|
993 |
+
"grad_norm": 0.4930702745914459,
|
994 |
+
"learning_rate": 2.045566138792361e-05,
|
995 |
+
"loss": 0.6683,
|
996 |
+
"step": 2820
|
997 |
},
|
998 |
{
|
999 |
+
"epoch": 0.8057880550432686,
|
1000 |
+
"grad_norm": 0.5729920268058777,
|
1001 |
+
"learning_rate": 2.032700540703459e-05,
|
1002 |
+
"loss": 0.6646,
|
1003 |
+
"step": 2840
|
1004 |
},
|
1005 |
{
|
1006 |
+
"epoch": 0.8114626188111789,
|
1007 |
+
"grad_norm": 0.5179927945137024,
|
1008 |
+
"learning_rate": 2.0197899402111127e-05,
|
1009 |
+
"loss": 0.6632,
|
1010 |
+
"step": 2860
|
1011 |
},
|
1012 |
{
|
1013 |
+
"epoch": 0.8171371825790892,
|
1014 |
+
"grad_norm": 0.5147942900657654,
|
1015 |
+
"learning_rate": 2.0068354279995008e-05,
|
1016 |
+
"loss": 0.6558,
|
1017 |
+
"step": 2880
|
1018 |
},
|
1019 |
{
|
1020 |
+
"epoch": 0.8228117463469996,
|
1021 |
+
"grad_norm": 0.5044906735420227,
|
1022 |
+
"learning_rate": 1.9938380984624533e-05,
|
1023 |
+
"loss": 0.6634,
|
1024 |
+
"step": 2900
|
1025 |
},
|
1026 |
{
|
1027 |
+
"epoch": 0.8284863101149099,
|
1028 |
+
"grad_norm": 0.5231923460960388,
|
1029 |
+
"learning_rate": 1.9807990496109965e-05,
|
1030 |
+
"loss": 0.6698,
|
1031 |
+
"step": 2920
|
1032 |
},
|
1033 |
{
|
1034 |
+
"epoch": 0.8341608738828202,
|
1035 |
+
"grad_norm": 0.5322957634925842,
|
1036 |
+
"learning_rate": 1.967719382980594e-05,
|
1037 |
+
"loss": 0.6568,
|
1038 |
+
"step": 2940
|
1039 |
},
|
1040 |
{
|
1041 |
+
"epoch": 0.8398354376507307,
|
1042 |
+
"grad_norm": 0.512269139289856,
|
1043 |
+
"learning_rate": 1.9546002035380886e-05,
|
1044 |
+
"loss": 0.6654,
|
1045 |
+
"step": 2960
|
1046 |
},
|
1047 |
{
|
1048 |
+
"epoch": 0.845510001418641,
|
1049 |
+
"grad_norm": 0.508976399898529,
|
1050 |
+
"learning_rate": 1.9414426195883558e-05,
|
1051 |
+
"loss": 0.6552,
|
1052 |
+
"step": 2980
|
1053 |
},
|
1054 |
{
|
1055 |
+
"epoch": 0.8511845651865513,
|
1056 |
+
"grad_norm": 0.5061299204826355,
|
1057 |
+
"learning_rate": 1.9282477426806723e-05,
|
1058 |
+
"loss": 0.6599,
|
1059 |
+
"step": 3000
|
1060 |
},
|
1061 |
{
|
1062 |
+
"epoch": 0.8568591289544616,
|
1063 |
+
"grad_norm": 0.510822057723999,
|
1064 |
+
"learning_rate": 1.9150166875148155e-05,
|
1065 |
+
"loss": 0.6612,
|
1066 |
+
"step": 3020
|
1067 |
},
|
1068 |
{
|
1069 |
+
"epoch": 0.862533692722372,
|
1070 |
+
"grad_norm": 0.5578708648681641,
|
1071 |
+
"learning_rate": 1.9017505718468934e-05,
|
1072 |
+
"loss": 0.658,
|
1073 |
+
"step": 3040
|
1074 |
},
|
1075 |
{
|
1076 |
+
"epoch": 0.8682082564902823,
|
1077 |
+
"grad_norm": 0.5130868554115295,
|
1078 |
+
"learning_rate": 1.888450516394914e-05,
|
1079 |
+
"loss": 0.6541,
|
1080 |
+
"step": 3060
|
1081 |
},
|
1082 |
{
|
1083 |
+
"epoch": 0.8738828202581926,
|
1084 |
+
"grad_norm": 0.5147811770439148,
|
1085 |
+
"learning_rate": 1.8751176447441104e-05,
|
1086 |
+
"loss": 0.6586,
|
1087 |
+
"step": 3080
|
1088 |
},
|
1089 |
{
|
1090 |
+
"epoch": 0.879557384026103,
|
1091 |
+
"grad_norm": 0.5556140542030334,
|
1092 |
+
"learning_rate": 1.861753083252021e-05,
|
1093 |
+
"loss": 0.6535,
|
1094 |
+
"step": 3100
|
1095 |
},
|
1096 |
{
|
1097 |
+
"epoch": 0.8852319477940134,
|
1098 |
+
"grad_norm": 0.509611964225769,
|
1099 |
+
"learning_rate": 1.8483579609533318e-05,
|
1100 |
+
"loss": 0.6537,
|
1101 |
+
"step": 3120
|
1102 |
},
|
1103 |
{
|
1104 |
+
"epoch": 0.8909065115619237,
|
1105 |
+
"grad_norm": 0.5088684558868408,
|
1106 |
+
"learning_rate": 1.834933409464499e-05,
|
1107 |
+
"loss": 0.6562,
|
1108 |
+
"step": 3140
|
1109 |
},
|
1110 |
{
|
1111 |
+
"epoch": 0.896581075329834,
|
1112 |
+
"grad_norm": 0.48405396938323975,
|
1113 |
+
"learning_rate": 1.821480562888148e-05,
|
1114 |
+
"loss": 0.6583,
|
1115 |
+
"step": 3160
|
1116 |
},
|
1117 |
{
|
1118 |
+
"epoch": 0.9022556390977443,
|
1119 |
+
"grad_norm": 0.5087782144546509,
|
1120 |
+
"learning_rate": 1.808000557717268e-05,
|
1121 |
+
"loss": 0.6558,
|
1122 |
+
"step": 3180
|
1123 |
},
|
1124 |
{
|
1125 |
+
"epoch": 0.9079302028656547,
|
1126 |
+
"grad_norm": 0.5303909778594971,
|
1127 |
+
"learning_rate": 1.7944945327391957e-05,
|
1128 |
+
"loss": 0.6517,
|
1129 |
+
"step": 3200
|
1130 |
},
|
1131 |
{
|
1132 |
+
"epoch": 0.913604766633565,
|
1133 |
+
"grad_norm": 0.5164442658424377,
|
1134 |
+
"learning_rate": 1.7809636289394185e-05,
|
1135 |
+
"loss": 0.6529,
|
1136 |
+
"step": 3220
|
1137 |
},
|
1138 |
{
|
1139 |
+
"epoch": 0.9192793304014754,
|
1140 |
+
"grad_norm": 0.5162308216094971,
|
1141 |
+
"learning_rate": 1.7674089894051774e-05,
|
1142 |
+
"loss": 0.6542,
|
1143 |
+
"step": 3240
|
1144 |
},
|
1145 |
{
|
1146 |
+
"epoch": 0.9249538941693858,
|
1147 |
+
"grad_norm": 0.545396625995636,
|
1148 |
+
"learning_rate": 1.753831759228903e-05,
|
1149 |
+
"loss": 0.6527,
|
1150 |
+
"step": 3260
|
1151 |
},
|
1152 |
{
|
1153 |
+
"epoch": 0.9306284579372961,
|
1154 |
+
"grad_norm": 0.5134595632553101,
|
1155 |
+
"learning_rate": 1.740233085411477e-05,
|
1156 |
+
"loss": 0.6555,
|
1157 |
+
"step": 3280
|
1158 |
},
|
1159 |
{
|
1160 |
+
"epoch": 0.9363030217052064,
|
1161 |
+
"grad_norm": 0.48815637826919556,
|
1162 |
+
"learning_rate": 1.7266141167653353e-05,
|
1163 |
+
"loss": 0.6554,
|
1164 |
+
"step": 3300
|
1165 |
},
|
1166 |
{
|
1167 |
+
"epoch": 0.9419775854731167,
|
1168 |
+
"grad_norm": 0.5034410953521729,
|
1169 |
+
"learning_rate": 1.7129760038174146e-05,
|
1170 |
+
"loss": 0.6514,
|
1171 |
+
"step": 3320
|
1172 |
},
|
1173 |
{
|
1174 |
+
"epoch": 0.9476521492410271,
|
1175 |
+
"grad_norm": 0.5322323441505432,
|
1176 |
+
"learning_rate": 1.6993198987119576e-05,
|
1177 |
+
"loss": 0.6533,
|
1178 |
+
"step": 3340
|
1179 |
},
|
1180 |
{
|
1181 |
+
"epoch": 0.9533267130089375,
|
1182 |
+
"grad_norm": 0.48363253474235535,
|
1183 |
+
"learning_rate": 1.6856469551131805e-05,
|
1184 |
+
"loss": 0.6468,
|
1185 |
+
"step": 3360
|
1186 |
},
|
1187 |
{
|
1188 |
+
"epoch": 0.9590012767768478,
|
1189 |
+
"grad_norm": 0.4600164592266083,
|
1190 |
+
"learning_rate": 1.67195832810781e-05,
|
1191 |
+
"loss": 0.6472,
|
1192 |
+
"step": 3380
|
1193 |
},
|
1194 |
{
|
1195 |
+
"epoch": 0.9646758405447581,
|
1196 |
+
"grad_norm": 0.49600768089294434,
|
1197 |
+
"learning_rate": 1.6582551741075033e-05,
|
1198 |
+
"loss": 0.6467,
|
1199 |
+
"step": 3400
|
1200 |
},
|
1201 |
{
|
1202 |
+
"epoch": 0.9703504043126685,
|
1203 |
+
"grad_norm": 0.7202423810958862,
|
1204 |
+
"learning_rate": 1.6445386507511546e-05,
|
1205 |
+
"loss": 0.6502,
|
1206 |
+
"step": 3420
|
1207 |
},
|
1208 |
{
|
1209 |
+
"epoch": 0.9760249680805788,
|
1210 |
+
"grad_norm": 0.502703070640564,
|
1211 |
+
"learning_rate": 1.630809916807098e-05,
|
1212 |
+
"loss": 0.6424,
|
1213 |
+
"step": 3440
|
1214 |
},
|
1215 |
{
|
1216 |
+
"epoch": 0.9816995318484891,
|
1217 |
+
"grad_norm": 0.49266818165779114,
|
1218 |
+
"learning_rate": 1.617070132075214e-05,
|
1219 |
+
"loss": 0.6485,
|
1220 |
+
"step": 3460
|
1221 |
},
|
1222 |
{
|
1223 |
+
"epoch": 0.9873740956163994,
|
1224 |
+
"grad_norm": 0.5194821357727051,
|
1225 |
+
"learning_rate": 1.6033204572889516e-05,
|
1226 |
+
"loss": 0.6499,
|
1227 |
+
"step": 3480
|
1228 |
},
|
1229 |
{
|
1230 |
+
"epoch": 0.9930486593843099,
|
1231 |
+
"grad_norm": 0.49109163880348206,
|
1232 |
+
"learning_rate": 1.5895620540172682e-05,
|
1233 |
+
"loss": 0.6506,
|
1234 |
+
"step": 3500
|
1235 |
},
|
1236 |
{
|
1237 |
+
"epoch": 0.9987232231522202,
|
1238 |
+
"grad_norm": 0.5099320411682129,
|
1239 |
+
"learning_rate": 1.575796084566503e-05,
|
1240 |
+
"loss": 0.6466,
|
1241 |
+
"step": 3520
|
1242 |
},
|
1243 |
{
|
1244 |
+
"epoch": 1.0043977869201306,
|
1245 |
+
"grad_norm": 0.5476223230361938,
|
1246 |
+
"learning_rate": 1.562023711882182e-05,
|
1247 |
+
"loss": 0.5924,
|
1248 |
+
"step": 3540
|
1249 |
},
|
1250 |
{
|
1251 |
+
"epoch": 1.010072350688041,
|
1252 |
+
"grad_norm": 0.4934983551502228,
|
1253 |
+
"learning_rate": 1.548246099450776e-05,
|
1254 |
+
"loss": 0.5683,
|
1255 |
+
"step": 3560
|
1256 |
},
|
1257 |
{
|
1258 |
+
"epoch": 1.0157469144559512,
|
1259 |
+
"grad_norm": 0.5262681841850281,
|
1260 |
+
"learning_rate": 1.534464411201409e-05,
|
1261 |
+
"loss": 0.5733,
|
1262 |
+
"step": 3580
|
1263 |
},
|
1264 |
{
|
1265 |
+
"epoch": 1.0214214782238615,
|
1266 |
+
"grad_norm": 0.5271425843238831,
|
1267 |
+
"learning_rate": 1.520679811407526e-05,
|
1268 |
+
"loss": 0.5697,
|
1269 |
+
"step": 3600
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.0270960419917718,
|
1273 |
+
"grad_norm": 0.5124356150627136,
|
1274 |
+
"learning_rate": 1.506893464588542e-05,
|
1275 |
+
"loss": 0.5653,
|
1276 |
+
"step": 3620
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.0327706057596822,
|
1280 |
+
"grad_norm": 0.5131009817123413,
|
1281 |
+
"learning_rate": 1.4931065354114584e-05,
|
1282 |
+
"loss": 0.5669,
|
1283 |
+
"step": 3640
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.0384451695275925,
|
1287 |
+
"grad_norm": 0.5003370046615601,
|
1288 |
+
"learning_rate": 1.4793201885924745e-05,
|
1289 |
+
"loss": 0.565,
|
1290 |
+
"step": 3660
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 1.044119733295503,
|
1294 |
+
"grad_norm": 0.5440374612808228,
|
1295 |
+
"learning_rate": 1.465535588798592e-05,
|
1296 |
+
"loss": 0.5708,
|
1297 |
+
"step": 3680
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 1.0497942970634133,
|
1301 |
+
"grad_norm": 0.5212259292602539,
|
1302 |
+
"learning_rate": 1.4517539005492237e-05,
|
1303 |
+
"loss": 0.57,
|
1304 |
+
"step": 3700
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.0554688608313236,
|
1308 |
+
"grad_norm": 0.5004721879959106,
|
1309 |
+
"learning_rate": 1.4379762881178182e-05,
|
1310 |
+
"loss": 0.5692,
|
1311 |
+
"step": 3720
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.061143424599234,
|
1315 |
+
"grad_norm": 0.5253936648368835,
|
1316 |
+
"learning_rate": 1.4242039154334973e-05,
|
1317 |
+
"loss": 0.5685,
|
1318 |
+
"step": 3740
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.0668179883671443,
|
1322 |
+
"grad_norm": 0.5163034200668335,
|
1323 |
+
"learning_rate": 1.410437945982732e-05,
|
1324 |
+
"loss": 0.5706,
|
1325 |
+
"step": 3760
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.0724925521350546,
|
1329 |
+
"grad_norm": 0.49630168080329895,
|
1330 |
+
"learning_rate": 1.3966795427110493e-05,
|
1331 |
+
"loss": 0.5725,
|
1332 |
+
"step": 3780
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 1.0781671159029649,
|
1336 |
+
"grad_norm": 0.5117852091789246,
|
1337 |
+
"learning_rate": 1.3829298679247865e-05,
|
1338 |
+
"loss": 0.5646,
|
1339 |
+
"step": 3800
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 1.0838416796708752,
|
1343 |
+
"grad_norm": 0.5082918405532837,
|
1344 |
+
"learning_rate": 1.369190083192902e-05,
|
1345 |
+
"loss": 0.5705,
|
1346 |
+
"step": 3820
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.0895162434387857,
|
1350 |
+
"grad_norm": 0.5319990515708923,
|
1351 |
+
"learning_rate": 1.3554613492488453e-05,
|
1352 |
+
"loss": 0.5684,
|
1353 |
+
"step": 3840
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.095190807206696,
|
1357 |
+
"grad_norm": 0.5344195365905762,
|
1358 |
+
"learning_rate": 1.3417448258924971e-05,
|
1359 |
+
"loss": 0.5658,
|
1360 |
+
"step": 3860
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.1008653709746063,
|
1364 |
+
"grad_norm": 0.507433295249939,
|
1365 |
+
"learning_rate": 1.3280416718921902e-05,
|
1366 |
+
"loss": 0.5717,
|
1367 |
+
"step": 3880
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.1065399347425167,
|
1371 |
+
"grad_norm": 0.5090216398239136,
|
1372 |
+
"learning_rate": 1.3143530448868198e-05,
|
1373 |
+
"loss": 0.5663,
|
1374 |
+
"step": 3900
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 1.112214498510427,
|
1378 |
+
"grad_norm": 0.512146532535553,
|
1379 |
+
"learning_rate": 1.3006801012880425e-05,
|
1380 |
+
"loss": 0.5656,
|
1381 |
+
"step": 3920
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 1.1178890622783373,
|
1385 |
+
"grad_norm": 0.5273200869560242,
|
1386 |
+
"learning_rate": 1.2870239961825853e-05,
|
1387 |
+
"loss": 0.5621,
|
1388 |
+
"step": 3940
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.1235636260462476,
|
1392 |
+
"grad_norm": 0.5408139824867249,
|
1393 |
+
"learning_rate": 1.2733858832346648e-05,
|
1394 |
+
"loss": 0.5744,
|
1395 |
+
"step": 3960
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.1292381898141581,
|
1399 |
+
"grad_norm": 0.4986436069011688,
|
1400 |
+
"learning_rate": 1.2597669145885231e-05,
|
1401 |
+
"loss": 0.5704,
|
1402 |
+
"step": 3980
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.1349127535820684,
|
1406 |
+
"grad_norm": 0.5186699628829956,
|
1407 |
+
"learning_rate": 1.2461682407710973e-05,
|
1408 |
+
"loss": 0.5588,
|
1409 |
+
"step": 4000
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.1405873173499788,
|
1413 |
+
"grad_norm": 0.5081115365028381,
|
1414 |
+
"learning_rate": 1.2325910105948229e-05,
|
1415 |
+
"loss": 0.5667,
|
1416 |
+
"step": 4020
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 1.146261881117889,
|
1420 |
+
"grad_norm": 0.501616358757019,
|
1421 |
+
"learning_rate": 1.219036371060582e-05,
|
1422 |
+
"loss": 0.5628,
|
1423 |
+
"step": 4040
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 1.1519364448857994,
|
1427 |
+
"grad_norm": 0.5288362503051758,
|
1428 |
+
"learning_rate": 1.2055054672608043e-05,
|
1429 |
+
"loss": 0.5642,
|
1430 |
+
"step": 4060
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.1576110086537097,
|
1434 |
+
"grad_norm": 0.5392152070999146,
|
1435 |
+
"learning_rate": 1.1919994422827326e-05,
|
1436 |
+
"loss": 0.5606,
|
1437 |
+
"step": 4080
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.16328557242162,
|
1441 |
+
"grad_norm": 0.514348030090332,
|
1442 |
+
"learning_rate": 1.1785194371118521e-05,
|
1443 |
+
"loss": 0.5653,
|
1444 |
+
"step": 4100
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 1.1689601361895305,
|
1448 |
+
"grad_norm": 0.4942004978656769,
|
1449 |
+
"learning_rate": 1.1650665905355014e-05,
|
1450 |
+
"loss": 0.5622,
|
1451 |
+
"step": 4120
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 1.1746346999574409,
|
1455 |
+
"grad_norm": 0.48802751302719116,
|
1456 |
+
"learning_rate": 1.1516420390466685e-05,
|
1457 |
+
"loss": 0.5613,
|
1458 |
+
"step": 4140
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 1.1803092637253512,
|
1462 |
+
"grad_norm": 0.5025625228881836,
|
1463 |
+
"learning_rate": 1.1382469167479795e-05,
|
1464 |
+
"loss": 0.5656,
|
1465 |
+
"step": 4160
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 1.1859838274932615,
|
1469 |
+
"grad_norm": 0.5276467204093933,
|
1470 |
+
"learning_rate": 1.1248823552558895e-05,
|
1471 |
+
"loss": 0.5639,
|
1472 |
+
"step": 4180
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.1916583912611718,
|
1476 |
+
"grad_norm": 0.5035718083381653,
|
1477 |
+
"learning_rate": 1.1115494836050861e-05,
|
1478 |
+
"loss": 0.5612,
|
1479 |
+
"step": 4200
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.197332955029082,
|
1483 |
+
"grad_norm": 0.5080997347831726,
|
1484 |
+
"learning_rate": 1.0982494281531069e-05,
|
1485 |
+
"loss": 0.5647,
|
1486 |
+
"step": 4220
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 1.2030075187969924,
|
1490 |
+
"grad_norm": 0.505695104598999,
|
1491 |
+
"learning_rate": 1.0849833124851846e-05,
|
1492 |
+
"loss": 0.5681,
|
1493 |
+
"step": 4240
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 1.2086820825649027,
|
1497 |
+
"grad_norm": 0.48905614018440247,
|
1498 |
+
"learning_rate": 1.0717522573193281e-05,
|
1499 |
+
"loss": 0.561,
|
1500 |
+
"step": 4260
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 1.2143566463328133,
|
1504 |
+
"grad_norm": 0.49127668142318726,
|
1505 |
+
"learning_rate": 1.0585573804116448e-05,
|
1506 |
+
"loss": 0.5639,
|
1507 |
+
"step": 4280
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 1.2200312101007236,
|
1511 |
+
"grad_norm": 0.5206524729728699,
|
1512 |
+
"learning_rate": 1.0453997964619112e-05,
|
1513 |
+
"loss": 0.5594,
|
1514 |
+
"step": 4300
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.2257057738686339,
|
1518 |
+
"grad_norm": 0.48683062195777893,
|
1519 |
+
"learning_rate": 1.0322806170194061e-05,
|
1520 |
+
"loss": 0.5622,
|
1521 |
+
"step": 4320
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.2313803376365442,
|
1525 |
+
"grad_norm": 0.532207190990448,
|
1526 |
+
"learning_rate": 1.0192009503890037e-05,
|
1527 |
+
"loss": 0.5581,
|
1528 |
+
"step": 4340
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 1.2370549014044545,
|
1532 |
+
"grad_norm": 0.49200239777565,
|
1533 |
+
"learning_rate": 1.0061619015375473e-05,
|
1534 |
+
"loss": 0.5594,
|
1535 |
+
"step": 4360
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 1.2427294651723648,
|
1539 |
+
"grad_norm": 0.504898190498352,
|
1540 |
+
"learning_rate": 9.931645720004995e-06,
|
1541 |
+
"loss": 0.5622,
|
1542 |
+
"step": 4380
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 1.2484040289402751,
|
1546 |
+
"grad_norm": 0.5061923861503601,
|
1547 |
+
"learning_rate": 9.802100597888877e-06,
|
1548 |
+
"loss": 0.5572,
|
1549 |
+
"step": 4400
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 1.2540785927081854,
|
1553 |
+
"grad_norm": 0.4961055815219879,
|
1554 |
+
"learning_rate": 9.672994592965409e-06,
|
1555 |
+
"loss": 0.5609,
|
1556 |
+
"step": 4420
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.259753156476096,
|
1560 |
+
"grad_norm": 0.4930592477321625,
|
1561 |
+
"learning_rate": 9.544338612076396e-06,
|
1562 |
+
"loss": 0.5637,
|
1563 |
+
"step": 4440
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.2654277202440063,
|
1567 |
+
"grad_norm": 0.4978179335594177,
|
1568 |
+
"learning_rate": 9.41614352404571e-06,
|
1569 |
+
"loss": 0.5615,
|
1570 |
+
"step": 4460
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 1.2711022840119166,
|
1574 |
+
"grad_norm": 0.5112114548683167,
|
1575 |
+
"learning_rate": 9.288420158761127e-06,
|
1576 |
+
"loss": 0.558,
|
1577 |
+
"step": 4480
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 1.276776847779827,
|
1581 |
+
"grad_norm": 0.5114573240280151,
|
1582 |
+
"learning_rate": 9.161179306259401e-06,
|
1583 |
+
"loss": 0.5561,
|
1584 |
+
"step": 4500
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 1.2824514115477372,
|
1588 |
+
"grad_norm": 0.5023430585861206,
|
1589 |
+
"learning_rate": 9.034431715814726e-06,
|
1590 |
+
"loss": 0.5558,
|
1591 |
+
"step": 4520
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 1.2881259753156475,
|
1595 |
+
"grad_norm": 0.503487765789032,
|
1596 |
+
"learning_rate": 8.908188095030655e-06,
|
1597 |
+
"loss": 0.5607,
|
1598 |
+
"step": 4540
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.2938005390835579,
|
1602 |
+
"grad_norm": 0.5188455581665039,
|
1603 |
+
"learning_rate": 8.78245910893552e-06,
|
1604 |
+
"loss": 0.5639,
|
1605 |
+
"step": 4560
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.2994751028514684,
|
1609 |
+
"grad_norm": 0.5216081738471985,
|
1610 |
+
"learning_rate": 8.657255379081438e-06,
|
1611 |
+
"loss": 0.5584,
|
1612 |
+
"step": 4580
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 1.3051496666193787,
|
1616 |
+
"grad_norm": 0.5024508833885193,
|
1617 |
+
"learning_rate": 8.532587482647013e-06,
|
1618 |
+
"loss": 0.5604,
|
1619 |
+
"step": 4600
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 1.310824230387289,
|
1623 |
+
"grad_norm": 0.5100445747375488,
|
1624 |
+
"learning_rate": 8.408465951543779e-06,
|
1625 |
+
"loss": 0.5596,
|
1626 |
+
"step": 4620
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 1.3164987941551993,
|
1630 |
+
"grad_norm": 0.5005710124969482,
|
1631 |
+
"learning_rate": 8.284901271526481e-06,
|
1632 |
+
"loss": 0.5591,
|
1633 |
+
"step": 4640
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 1.3221733579231096,
|
1637 |
+
"grad_norm": 0.5151055455207825,
|
1638 |
+
"learning_rate": 8.161903881307231e-06,
|
1639 |
+
"loss": 0.5462,
|
1640 |
+
"step": 4660
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.32784792169102,
|
1644 |
+
"grad_norm": 0.4919968545436859,
|
1645 |
+
"learning_rate": 8.039484171673628e-06,
|
1646 |
+
"loss": 0.5523,
|
1647 |
+
"step": 4680
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 1.3335224854589303,
|
1651 |
+
"grad_norm": 0.5007758140563965,
|
1652 |
+
"learning_rate": 7.917652484610975e-06,
|
1653 |
+
"loss": 0.5545,
|
1654 |
+
"step": 4700
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 1.3391970492268408,
|
1658 |
+
"grad_norm": 0.4885912537574768,
|
1659 |
+
"learning_rate": 7.796419112428583e-06,
|
1660 |
+
"loss": 0.5582,
|
1661 |
+
"step": 4720
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 1.344871612994751,
|
1665 |
+
"grad_norm": 0.4874049127101898,
|
1666 |
+
"learning_rate": 7.675794296890265e-06,
|
1667 |
+
"loss": 0.5505,
|
1668 |
+
"step": 4740
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 1.3505461767626614,
|
1672 |
+
"grad_norm": 0.46998655796051025,
|
1673 |
+
"learning_rate": 7.555788228349143e-06,
|
1674 |
+
"loss": 0.554,
|
1675 |
+
"step": 4760
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 1.3562207405305717,
|
1679 |
+
"grad_norm": 0.4996753931045532,
|
1680 |
+
"learning_rate": 7.436411044886753e-06,
|
1681 |
+
"loss": 0.5513,
|
1682 |
+
"step": 4780
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 1.361895304298482,
|
1686 |
+
"grad_norm": 0.502571165561676,
|
1687 |
+
"learning_rate": 7.31767283145657e-06,
|
1688 |
+
"loss": 0.5547,
|
1689 |
+
"step": 4800
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 1.3675698680663924,
|
1693 |
+
"grad_norm": 0.48792627453804016,
|
1694 |
+
"learning_rate": 7.199583619032052e-06,
|
1695 |
+
"loss": 0.5551,
|
1696 |
+
"step": 4820
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 1.3732444318343027,
|
1700 |
+
"grad_norm": 0.48799988627433777,
|
1701 |
+
"learning_rate": 7.082153383759222e-06,
|
1702 |
+
"loss": 0.5524,
|
1703 |
+
"step": 4840
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 1.3789189956022132,
|
1707 |
+
"grad_norm": 0.4976406991481781,
|
1708 |
+
"learning_rate": 6.9653920461138755e-06,
|
1709 |
+
"loss": 0.5548,
|
1710 |
+
"step": 4860
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 1.3845935593701233,
|
1714 |
+
"grad_norm": 0.5006715655326843,
|
1715 |
+
"learning_rate": 6.849309470063529e-06,
|
1716 |
+
"loss": 0.5544,
|
1717 |
+
"step": 4880
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 1.3902681231380338,
|
1721 |
+
"grad_norm": 0.4864628314971924,
|
1722 |
+
"learning_rate": 6.7339154622340754e-06,
|
1723 |
+
"loss": 0.5483,
|
1724 |
+
"step": 4900
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 1.3959426869059441,
|
1728 |
+
"grad_norm": 0.48580724000930786,
|
1729 |
+
"learning_rate": 6.619219771081361e-06,
|
1730 |
+
"loss": 0.5544,
|
1731 |
+
"step": 4920
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 1.4016172506738545,
|
1735 |
+
"grad_norm": 0.5042415857315063,
|
1736 |
+
"learning_rate": 6.505232086067607e-06,
|
1737 |
+
"loss": 0.5504,
|
1738 |
+
"step": 4940
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 1.4072918144417648,
|
1742 |
+
"grad_norm": 0.4970082640647888,
|
1743 |
+
"learning_rate": 6.391962036842863e-06,
|
1744 |
+
"loss": 0.547,
|
1745 |
+
"step": 4960
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 1.412966378209675,
|
1749 |
+
"grad_norm": 0.47866857051849365,
|
1750 |
+
"learning_rate": 6.279419192431494e-06,
|
1751 |
+
"loss": 0.5548,
|
1752 |
+
"step": 4980
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 1.4186409419775854,
|
1756 |
+
"grad_norm": 0.4664076566696167,
|
1757 |
+
"learning_rate": 6.167613060423789e-06,
|
1758 |
+
"loss": 0.5454,
|
1759 |
+
"step": 5000
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 1.4243155057454957,
|
1763 |
+
"grad_norm": 0.49711087346076965,
|
1764 |
+
"learning_rate": 6.0565530861727685e-06,
|
1765 |
+
"loss": 0.5519,
|
1766 |
+
"step": 5020
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 1.4299900695134062,
|
1770 |
+
"grad_norm": 0.46965324878692627,
|
1771 |
+
"learning_rate": 5.946248651996244e-06,
|
1772 |
+
"loss": 0.5519,
|
1773 |
+
"step": 5040
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 1.4356646332813165,
|
1777 |
+
"grad_norm": 0.505743145942688,
|
1778 |
+
"learning_rate": 5.836709076384188e-06,
|
1779 |
+
"loss": 0.5482,
|
1780 |
+
"step": 5060
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 1.4413391970492269,
|
1784 |
+
"grad_norm": 0.5078002214431763,
|
1785 |
+
"learning_rate": 5.727943613211521e-06,
|
1786 |
+
"loss": 0.5575,
|
1787 |
+
"step": 5080
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 1.4470137608171372,
|
1791 |
+
"grad_norm": 0.48647207021713257,
|
1792 |
+
"learning_rate": 5.619961450956347e-06,
|
1793 |
+
"loss": 0.5461,
|
1794 |
+
"step": 5100
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 1.4526883245850475,
|
1798 |
+
"grad_norm": 0.4711668789386749,
|
1799 |
+
"learning_rate": 5.5127717119237084e-06,
|
1800 |
+
"loss": 0.5472,
|
1801 |
+
"step": 5120
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 1.4583628883529578,
|
1805 |
+
"grad_norm": 0.518395721912384,
|
1806 |
+
"learning_rate": 5.406383451474948e-06,
|
1807 |
+
"loss": 0.5483,
|
1808 |
+
"step": 5140
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 1.464037452120868,
|
1812 |
+
"grad_norm": 0.4849320948123932,
|
1813 |
+
"learning_rate": 5.300805657262706e-06,
|
1814 |
+
"loss": 0.5459,
|
1815 |
+
"step": 5160
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 1.4697120158887786,
|
1819 |
+
"grad_norm": 0.501943826675415,
|
1820 |
+
"learning_rate": 5.1960472484716374e-06,
|
1821 |
+
"loss": 0.5482,
|
1822 |
+
"step": 5180
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 1.475386579656689,
|
1826 |
+
"grad_norm": 0.48699691891670227,
|
1827 |
+
"learning_rate": 5.092117075064931e-06,
|
1828 |
+
"loss": 0.5522,
|
1829 |
+
"step": 5200
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 1.4810611434245993,
|
1833 |
+
"grad_norm": 0.48894861340522766,
|
1834 |
+
"learning_rate": 4.989023917036667e-06,
|
1835 |
+
"loss": 0.5502,
|
1836 |
+
"step": 5220
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 1.4867357071925096,
|
1840 |
+
"grad_norm": 0.49131521582603455,
|
1841 |
+
"learning_rate": 4.886776483670077e-06,
|
1842 |
+
"loss": 0.5466,
|
1843 |
+
"step": 5240
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 1.49241027096042,
|
1847 |
+
"grad_norm": 0.47139400243759155,
|
1848 |
+
"learning_rate": 4.78538341280181e-06,
|
1849 |
+
"loss": 0.5473,
|
1850 |
+
"step": 5260
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 1.4980848347283302,
|
1854 |
+
"grad_norm": 0.49604731798171997,
|
1855 |
+
"learning_rate": 4.684853270092173e-06,
|
1856 |
+
"loss": 0.5498,
|
1857 |
+
"step": 5280
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 1.5037593984962405,
|
1861 |
+
"grad_norm": 0.4864351749420166,
|
1862 |
+
"learning_rate": 4.585194548301545e-06,
|
1863 |
+
"loss": 0.5448,
|
1864 |
+
"step": 5300
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 1.509433962264151,
|
1868 |
+
"grad_norm": 0.48130905628204346,
|
1869 |
+
"learning_rate": 4.486415666572874e-06,
|
1870 |
+
"loss": 0.5469,
|
1871 |
+
"step": 5320
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 1.5151085260320611,
|
1875 |
+
"grad_norm": 0.4783124625682831,
|
1876 |
+
"learning_rate": 4.388524969720458e-06,
|
1877 |
+
"loss": 0.546,
|
1878 |
+
"step": 5340
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 1.5207830897999717,
|
1882 |
+
"grad_norm": 0.4969868063926697,
|
1883 |
+
"learning_rate": 4.2915307275249585e-06,
|
1884 |
+
"loss": 0.5453,
|
1885 |
+
"step": 5360
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 1.526457653567882,
|
1889 |
+
"grad_norm": 0.4832542836666107,
|
1890 |
+
"learning_rate": 4.195441134034799e-06,
|
1891 |
+
"loss": 0.5463,
|
1892 |
+
"step": 5380
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 1.5321322173357923,
|
1896 |
+
"grad_norm": 0.4712090790271759,
|
1897 |
+
"learning_rate": 4.10026430687389e-06,
|
1898 |
+
"loss": 0.5449,
|
1899 |
+
"step": 5400
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 1.5378067811037026,
|
1903 |
+
"grad_norm": 0.4822421967983246,
|
1904 |
+
"learning_rate": 4.0060082865559035e-06,
|
1905 |
+
"loss": 0.5465,
|
1906 |
+
"step": 5420
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 1.543481344871613,
|
1910 |
+
"grad_norm": 0.4809670150279999,
|
1911 |
+
"learning_rate": 3.912681035804971e-06,
|
1912 |
+
"loss": 0.5406,
|
1913 |
+
"step": 5440
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 1.5491559086395235,
|
1917 |
+
"grad_norm": 0.4631410539150238,
|
1918 |
+
"learning_rate": 3.820290438883018e-06,
|
1919 |
+
"loss": 0.5461,
|
1920 |
+
"step": 5460
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 1.5548304724074336,
|
1924 |
+
"grad_norm": 0.46498140692710876,
|
1925 |
+
"learning_rate": 3.728844300923694e-06,
|
1926 |
+
"loss": 0.5419,
|
1927 |
+
"step": 5480
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 1.560505036175344,
|
1931 |
+
"grad_norm": 0.4786704480648041,
|
1932 |
+
"learning_rate": 3.6383503472730116e-06,
|
1933 |
+
"loss": 0.5476,
|
1934 |
+
"step": 5500
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 1.5661795999432544,
|
1938 |
+
"grad_norm": 0.4655323624610901,
|
1939 |
+
"learning_rate": 3.548816222836688e-06,
|
1940 |
+
"loss": 0.5406,
|
1941 |
+
"step": 5520
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 1.5718541637111647,
|
1945 |
+
"grad_norm": 0.46424925327301025,
|
1946 |
+
"learning_rate": 3.460249491434319e-06,
|
1947 |
+
"loss": 0.5415,
|
1948 |
+
"step": 5540
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 1.577528727479075,
|
1952 |
+
"grad_norm": 0.45783787965774536,
|
1953 |
+
"learning_rate": 3.3726576351603985e-06,
|
1954 |
+
"loss": 0.5503,
|
1955 |
+
"step": 5560
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 1.5832032912469853,
|
1959 |
+
"grad_norm": 0.49086692929267883,
|
1960 |
+
"learning_rate": 3.2860480537522103e-06,
|
1961 |
+
"loss": 0.543,
|
1962 |
+
"step": 5580
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 1.5888778550148959,
|
1966 |
+
"grad_norm": 0.48474520444869995,
|
1967 |
+
"learning_rate": 3.2004280639647122e-06,
|
1968 |
+
"loss": 0.539,
|
1969 |
+
"step": 5600
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 1.594552418782806,
|
1973 |
+
"grad_norm": 0.5037649869918823,
|
1974 |
+
"learning_rate": 3.115804898952434e-06,
|
1975 |
+
"loss": 0.5415,
|
1976 |
+
"step": 5620
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 1.6002269825507165,
|
1980 |
+
"grad_norm": 0.4954313337802887,
|
1981 |
+
"learning_rate": 3.032185707658389e-06,
|
1982 |
+
"loss": 0.5487,
|
1983 |
+
"step": 5640
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 1.6059015463186268,
|
1987 |
+
"grad_norm": 0.4597771465778351,
|
1988 |
+
"learning_rate": 2.949577554210157e-06,
|
1989 |
+
"loss": 0.5445,
|
1990 |
+
"step": 5660
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 1.6115761100865371,
|
1994 |
+
"grad_norm": 0.4839852750301361,
|
1995 |
+
"learning_rate": 2.8679874173231137e-06,
|
1996 |
+
"loss": 0.5499,
|
1997 |
+
"step": 5680
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 1.6172506738544474,
|
2001 |
+
"grad_norm": 0.4653310179710388,
|
2002 |
+
"learning_rate": 2.787422189710844e-06,
|
2003 |
+
"loss": 0.5453,
|
2004 |
+
"step": 5700
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 1.6229252376223577,
|
2008 |
+
"grad_norm": 0.485579252243042,
|
2009 |
+
"learning_rate": 2.7078886775028693e-06,
|
2010 |
+
"loss": 0.5383,
|
2011 |
+
"step": 5720
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 1.6285998013902683,
|
2015 |
+
"grad_norm": 0.4727838337421417,
|
2016 |
+
"learning_rate": 2.629393599669667e-06,
|
2017 |
+
"loss": 0.5421,
|
2018 |
+
"step": 5740
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 1.6342743651581784,
|
2022 |
+
"grad_norm": 0.45239365100860596,
|
2023 |
+
"learning_rate": 2.5519435874550434e-06,
|
2024 |
+
"loss": 0.5357,
|
2025 |
+
"step": 5760
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 1.639948928926089,
|
2029 |
+
"grad_norm": 0.4669874310493469,
|
2030 |
+
"learning_rate": 2.475545183815926e-06,
|
2031 |
+
"loss": 0.5385,
|
2032 |
+
"step": 5780
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 1.645623492693999,
|
2036 |
+
"grad_norm": 0.4859563410282135,
|
2037 |
+
"learning_rate": 2.400204842869637e-06,
|
2038 |
+
"loss": 0.5446,
|
2039 |
+
"step": 5800
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 1.6512980564619095,
|
2043 |
+
"grad_norm": 0.4492729902267456,
|
2044 |
+
"learning_rate": 2.3259289293486246e-06,
|
2045 |
+
"loss": 0.5418,
|
2046 |
+
"step": 5820
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 1.6569726202298198,
|
2050 |
+
"grad_norm": 0.46383896470069885,
|
2051 |
+
"learning_rate": 2.252723718062787e-06,
|
2052 |
+
"loss": 0.5401,
|
2053 |
+
"step": 5840
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 1.6626471839977301,
|
2057 |
+
"grad_norm": 0.48168492317199707,
|
2058 |
+
"learning_rate": 2.1805953933693835e-06,
|
2059 |
+
"loss": 0.5423,
|
2060 |
+
"step": 5860
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 1.6683217477656405,
|
2064 |
+
"grad_norm": 0.46742239594459534,
|
2065 |
+
"learning_rate": 2.109550048650563e-06,
|
2066 |
+
"loss": 0.542,
|
2067 |
+
"step": 5880
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 1.6739963115335508,
|
2071 |
+
"grad_norm": 0.46751725673675537,
|
2072 |
+
"learning_rate": 2.0395936857986125e-06,
|
2073 |
+
"loss": 0.5402,
|
2074 |
+
"step": 5900
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 1.6796708753014613,
|
2078 |
+
"grad_norm": 0.49627310037612915,
|
2079 |
+
"learning_rate": 1.970732214708908e-06,
|
2080 |
+
"loss": 0.5461,
|
2081 |
+
"step": 5920
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 1.6853454390693714,
|
2085 |
+
"grad_norm": 0.46826520562171936,
|
2086 |
+
"learning_rate": 1.9029714527806652e-06,
|
2087 |
+
"loss": 0.5385,
|
2088 |
+
"step": 5940
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 1.691020002837282,
|
2092 |
+
"grad_norm": 0.4701858162879944,
|
2093 |
+
"learning_rate": 1.8363171244254606e-06,
|
2094 |
+
"loss": 0.5376,
|
2095 |
+
"step": 5960
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 1.6966945666051922,
|
2099 |
+
"grad_norm": 0.4635229706764221,
|
2100 |
+
"learning_rate": 1.7707748605836632e-06,
|
2101 |
+
"loss": 0.5378,
|
2102 |
+
"step": 5980
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 1.7023691303731026,
|
2106 |
+
"grad_norm": 0.4729613661766052,
|
2107 |
+
"learning_rate": 1.7063501982487135e-06,
|
2108 |
+
"loss": 0.5437,
|
2109 |
+
"step": 6000
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 1.7080436941410129,
|
2113 |
+
"grad_norm": 0.4672451913356781,
|
2114 |
+
"learning_rate": 1.6430485799993673e-06,
|
2115 |
+
"loss": 0.5428,
|
2116 |
+
"step": 6020
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 1.7137182579089232,
|
2120 |
+
"grad_norm": 0.46772390604019165,
|
2121 |
+
"learning_rate": 1.5808753535399022e-06,
|
2122 |
+
"loss": 0.5392,
|
2123 |
+
"step": 6040
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 1.7193928216768337,
|
2127 |
+
"grad_norm": 0.46337825059890747,
|
2128 |
+
"learning_rate": 1.5198357712483629e-06,
|
2129 |
+
"loss": 0.5413,
|
2130 |
+
"step": 6060
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 1.7250673854447438,
|
2134 |
+
"grad_norm": 0.48103076219558716,
|
2135 |
+
"learning_rate": 1.459934989732818e-06,
|
2136 |
+
"loss": 0.5416,
|
2137 |
+
"step": 6080
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 1.7307419492126543,
|
2141 |
+
"grad_norm": 0.45769959688186646,
|
2142 |
+
"learning_rate": 1.4011780693957492e-06,
|
2143 |
+
"loss": 0.5436,
|
2144 |
+
"step": 6100
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 1.7364165129805647,
|
2148 |
+
"grad_norm": 0.4552821218967438,
|
2149 |
+
"learning_rate": 1.3435699740065377e-06,
|
2150 |
+
"loss": 0.5425,
|
2151 |
+
"step": 6120
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 1.742091076748475,
|
2155 |
+
"grad_norm": 0.48623600602149963,
|
2156 |
+
"learning_rate": 1.2871155702821324e-06,
|
2157 |
+
"loss": 0.5427,
|
2158 |
+
"step": 6140
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 1.7477656405163853,
|
2162 |
+
"grad_norm": 0.5024483799934387,
|
2163 |
+
"learning_rate": 1.231819627475911e-06,
|
2164 |
+
"loss": 0.5384,
|
2165 |
+
"step": 6160
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 1.7534402042842956,
|
2169 |
+
"grad_norm": 0.4556623101234436,
|
2170 |
+
"learning_rate": 1.1776868169747702e-06,
|
2171 |
+
"loss": 0.5393,
|
2172 |
+
"step": 6180
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 1.7591147680522061,
|
2176 |
+
"grad_norm": 0.4748471677303314,
|
2177 |
+
"learning_rate": 1.1247217119044951e-06,
|
2178 |
+
"loss": 0.5385,
|
2179 |
+
"step": 6200
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 1.7647893318201162,
|
2183 |
+
"grad_norm": 0.4622340500354767,
|
2184 |
+
"learning_rate": 1.07292878674342e-06,
|
2185 |
+
"loss": 0.5377,
|
2186 |
+
"step": 6220
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 1.7704638955880267,
|
2190 |
+
"grad_norm": 0.4581329822540283,
|
2191 |
+
"learning_rate": 1.0223124169444236e-06,
|
2192 |
+
"loss": 0.5366,
|
2193 |
+
"step": 6240
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 1.776138459355937,
|
2197 |
+
"grad_norm": 0.4667391777038574,
|
2198 |
+
"learning_rate": 9.72876878565287e-07,
|
2199 |
+
"loss": 0.539,
|
2200 |
+
"step": 6260
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 1.7818130231238474,
|
2204 |
+
"grad_norm": 0.4563803970813751,
|
2205 |
+
"learning_rate": 9.246263479074663e-07,
|
2206 |
+
"loss": 0.5403,
|
2207 |
+
"step": 6280
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 1.7874875868917577,
|
2211 |
+
"grad_norm": 0.44948819279670715,
|
2212 |
+
"learning_rate": 8.775649011632703e-07,
|
2213 |
+
"loss": 0.5392,
|
2214 |
+
"step": 6300
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 1.793162150659668,
|
2218 |
+
"grad_norm": 0.4829549193382263,
|
2219 |
+
"learning_rate": 8.316965140715071e-07,
|
2220 |
+
"loss": 0.5373,
|
2221 |
+
"step": 6320
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 1.7988367144275785,
|
2225 |
+
"grad_norm": 0.4718981683254242,
|
2226 |
+
"learning_rate": 7.870250615816182e-07,
|
2227 |
+
"loss": 0.5383,
|
2228 |
+
"step": 6340
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 1.8045112781954886,
|
2232 |
+
"grad_norm": 0.4641667306423187,
|
2233 |
+
"learning_rate": 7.435543175263166e-07,
|
2234 |
+
"loss": 0.543,
|
2235 |
+
"step": 6360
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 1.8101858419633992,
|
2239 |
+
"grad_norm": 0.45884087681770325,
|
2240 |
+
"learning_rate": 7.012879543027801e-07,
|
2241 |
+
"loss": 0.538,
|
2242 |
+
"step": 6380
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 1.8158604057313092,
|
2246 |
+
"grad_norm": 0.4888609051704407,
|
2247 |
+
"learning_rate": 6.602295425624033e-07,
|
2248 |
+
"loss": 0.5366,
|
2249 |
+
"step": 6400
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 1.8215349694992198,
|
2253 |
+
"grad_norm": 0.46243107318878174,
|
2254 |
+
"learning_rate": 6.20382550909157e-07,
|
2255 |
+
"loss": 0.5365,
|
2256 |
+
"step": 6420
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 1.82720953326713,
|
2260 |
+
"grad_norm": 0.46520647406578064,
|
2261 |
+
"learning_rate": 5.817503456065559e-07,
|
2262 |
+
"loss": 0.5339,
|
2263 |
+
"step": 6440
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 1.8328840970350404,
|
2267 |
+
"grad_norm": 0.47549664974212646,
|
2268 |
+
"learning_rate": 5.443361902932792e-07,
|
2269 |
+
"loss": 0.5361,
|
2270 |
+
"step": 6460
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 1.838558660802951,
|
2274 |
+
"grad_norm": 0.4677965044975281,
|
2275 |
+
"learning_rate": 5.081432457074614e-07,
|
2276 |
+
"loss": 0.5394,
|
2277 |
+
"step": 6480
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 1.844233224570861,
|
2281 |
+
"grad_norm": 0.46250638365745544,
|
2282 |
+
"learning_rate": 4.7317456941966597e-07,
|
2283 |
+
"loss": 0.5388,
|
2284 |
+
"step": 6500
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 1.8499077883387716,
|
2288 |
+
"grad_norm": 0.4758864641189575,
|
2289 |
+
"learning_rate": 4.3943311557459177e-07,
|
2290 |
+
"loss": 0.534,
|
2291 |
+
"step": 6520
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 1.8555823521066817,
|
2295 |
+
"grad_norm": 0.4370381832122803,
|
2296 |
+
"learning_rate": 4.069217346415027e-07,
|
2297 |
+
"loss": 0.5339,
|
2298 |
+
"step": 6540
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 1.8612569158745922,
|
2302 |
+
"grad_norm": 0.4617324769496918,
|
2303 |
+
"learning_rate": 3.756431731734272e-07,
|
2304 |
+
"loss": 0.5396,
|
2305 |
+
"step": 6560
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 1.8669314796425025,
|
2309 |
+
"grad_norm": 0.4532717168331146,
|
2310 |
+
"learning_rate": 3.4560007357511856e-07,
|
2311 |
+
"loss": 0.5393,
|
2312 |
+
"step": 6580
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 1.8726060434104128,
|
2316 |
+
"grad_norm": 0.46486184000968933,
|
2317 |
+
"learning_rate": 3.16794973879837e-07,
|
2318 |
+
"loss": 0.5367,
|
2319 |
+
"step": 6600
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 1.8782806071783231,
|
2323 |
+
"grad_norm": 0.44514200091362,
|
2324 |
+
"learning_rate": 2.8923030753492783e-07,
|
2325 |
+
"loss": 0.5384,
|
2326 |
+
"step": 6620
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 1.8839551709462334,
|
2330 |
+
"grad_norm": 0.4737865924835205,
|
2331 |
+
"learning_rate": 2.6290840319625255e-07,
|
2332 |
+
"loss": 0.5355,
|
2333 |
+
"step": 6640
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 1.889629734714144,
|
2337 |
+
"grad_norm": 0.45271801948547363,
|
2338 |
+
"learning_rate": 2.378314845314561e-07,
|
2339 |
+
"loss": 0.5451,
|
2340 |
+
"step": 6660
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 1.895304298482054,
|
2344 |
+
"grad_norm": 0.46050384640693665,
|
2345 |
+
"learning_rate": 2.14001670032124e-07,
|
2346 |
+
"loss": 0.5347,
|
2347 |
+
"step": 6680
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 1.9009788622499646,
|
2351 |
+
"grad_norm": 0.4726841151714325,
|
2352 |
+
"learning_rate": 1.9142097283479876e-07,
|
2353 |
+
"loss": 0.5428,
|
2354 |
+
"step": 6700
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 1.906653426017875,
|
2358 |
+
"grad_norm": 0.4662003815174103,
|
2359 |
+
"learning_rate": 1.700913005509208e-07,
|
2360 |
+
"loss": 0.5407,
|
2361 |
+
"step": 6720
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 1.9123279897857852,
|
2365 |
+
"grad_norm": 0.44422999024391174,
|
2366 |
+
"learning_rate": 1.500144551056709e-07,
|
2367 |
+
"loss": 0.535,
|
2368 |
+
"step": 6740
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 1.9180025535536955,
|
2372 |
+
"grad_norm": 0.4599597752094269,
|
2373 |
+
"learning_rate": 1.3119213258574015e-07,
|
2374 |
+
"loss": 0.5376,
|
2375 |
+
"step": 6760
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 1.9236771173216058,
|
2379 |
+
"grad_norm": 0.4735456705093384,
|
2380 |
+
"learning_rate": 1.1362592309605291e-07,
|
2381 |
+
"loss": 0.5392,
|
2382 |
+
"step": 6780
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 1.9293516810895164,
|
2386 |
+
"grad_norm": 0.4692912995815277,
|
2387 |
+
"learning_rate": 9.731731062542604e-08,
|
2388 |
+
"loss": 0.5398,
|
2389 |
+
"step": 6800
|
2390 |
}
|
2391 |
],
|
2392 |
+
"logging_steps": 20,
|
2393 |
+
"max_steps": 7048,
|
2394 |
"num_input_tokens_seen": 0,
|
2395 |
+
"num_train_epochs": 2,
|
2396 |
"save_steps": 200,
|
2397 |
"stateful_callbacks": {
|
2398 |
"TrainerControl": {
|
|
|
2406 |
"attributes": {}
|
2407 |
}
|
2408 |
},
|
2409 |
+
"total_flos": 1.5124467391135325e+20,
|
2410 |
+
"train_batch_size": 1,
|
2411 |
"trial_name": null,
|
2412 |
"trial_params": null
|
2413 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffd93f25c50f75fbd7f7b6ad5a315acf357ca57e88203e0285f40efaac4f4e34
|
3 |
+
size 6520
|