File size: 8,029 Bytes
5c77409 9620ec6 6ae32f6 3378b61 babe571 9620ec6 aba3cde 9620ec6 aba3cde 9620ec6 aba3cde 9620ec6 61a33f7 d727650 9620ec6 8b3815b aba3cde 9620ec6 d727650 9620ec6 aba3cde 9620ec6 4356641 9620ec6 d727650 6774b71 d727650 9620ec6 aba3cde 9620ec6 aba3cde dc5c07d aba3cde dc5c07d 9620ec6 6774b71 9620ec6 d727650 dc5c07d d727650 9620ec6 dc5c07d d727650 9620ec6 aba3cde 9620ec6 aba3cde 9620ec6 aba3cde 9620ec6 aba3cde babe571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
---
language:
- en
license: llama2
pipeline_tag: video-text-to-text
datasets:
- lmms-lab/VideoChatGPT
---
# LLaVA-NeXT-Video Model Card
Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1CZggLHrjxMReG-FNOmqSOdi4z7NPq6SO?usp=sharing)
Disclaimer: The team releasing LLaVa-NeXT-Video did not write a model card for this model so this model card has been written by the Hugging Face team.
## π Model details
**Model type:**
LLaVA-Next-Video is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data. The model is buit on top of LLaVa-NeXT by tuning on a mix of video and image data to achieve better video understanding capabilities. The videos were sampled uniformly to be 32 frames per clip.
The model is a current SOTA among open-source models on [VideoMME bench](https://arxiv.org/abs/2405.21075).
Base LLM: [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5)
![llava_next_video_arch](demo.png)
**Model date:**
LLaVA-Next-Video-7B was trained in April 2024.
**Paper or resources for more information:** https://github.com/LLaVA-VL/LLaVA-NeXT
## π Training dataset
### Image
- 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
- 158K GPT-generated multimodal instruction-following data.
- 500K academic-task-oriented VQA data mixture.
- 50K GPT-4V data mixture.
- 40K ShareGPT data.
### Video
- 100K VideoChatGPT-Instruct.
## π Evaluation dataset
A collection of 4 benchmarks, including 3 academic VQA benchmarks and 1 captioning benchmark.
## π How to use the model
First, make sure to have `transformers >= 4.42.0`.
The model supports multi-visual and multi-prompt generation. Meaning that you can pass multiple images/videos in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` or `<video>` to the location where you want to query images/videos:
Below is an example script to run generation in `float16` precision on a GPU device:
```python
import av
import torch
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import LlavaNextVideoProcessor, LlavaNextVideoForConditionalGeneration
model_id = "llava-hf/LLaVA-NeXT-Video-7B-hf"
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = LlavaNextVideoProcessor.from_pretrained(model_id)
def read_video_pyav(container, indices):
'''
Decode the video with PyAV decoder.
Args:
container (`av.container.input.InputContainer`): PyAV container.
indices (`List[int]`): List of frame indices to decode.
Returns:
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
'''
frames = []
container.seek(0)
start_index = indices[0]
end_index = indices[-1]
for i, frame in enumerate(container.decode(video=0)):
if i > end_index:
break
if i >= start_index and i in indices:
frames.append(frame)
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
# define a chat history and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image", "video")
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "Why is this video funny?"},
{"type": "video"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
container = av.open(video_path)
# sample uniformly 8 frames from the video, can sample more for longer videos
total_frames = container.streams.video[0].frames
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
clip = read_video_pyav(container, indices)
inputs_video = processor(text=prompt, videos=clip, padding=True, return_tensors="pt").to(model.device)
output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```
### Inference with images as inputs
To generate from images use the below code after loading the model as shown above:
```python
import requests
from PIL import Image
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "What are these?"},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs_image = processor(text=prompt, images=raw_image, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```
### Inference with images and videos as inputs
To generate from images and videos in one generate use the below code after loading the model as shown above:
```python
conversation_1 = [
{
"role": "user",
"content": [
{"type": "text", "text": "What's the content of the image>"},
{"type": "image"},
],
}
]
conversation_2 = [
{
"role": "user",
"content": [
{"type": "text", "text": "Why is this video funny?"},
{"type": "video"},
],
},
]
prompt_1 = processor.apply_chat_template(conversation_1, add_generation_prompt=True)
prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)
s = processor(text=[prompt_1, prompt_2], images=image, videos=clip, padding=True, return_tensors="pt").to(model.device)
# Generate
generate_ids = model.generate(**inputs, max_new_tokens=100)
out = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(out)
```
### Model optimization
#### 4-bit quantization through `bitsandbytes` library
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
```diff
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ load_in_4bit=True
)
```
#### Use Flash-Attention 2 to further speed-up generation
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
```diff
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ use_flash_attention_2=True
).to(0)
```
## π License
Llama 2 is licensed under the LLAMA 2 Community License,
Copyright (c) Meta Platforms, Inc. All Rights Reserved.
## βοΈ Citation
If you find our paper and code useful in your research:
```BibTeX
@misc{zhang2024llavanextvideo,
title={LLaVA-NeXT: A Strong Zero-shot Video Understanding Model},
url={https://llava-vl.github.io/blog/2024-04-30-llava-next-video/},
author={Zhang, Yuanhan and Li, Bo and Liu, haotian and Lee, Yong jae and Gui, Liangke and Fu, Di and Feng, Jiashi and Liu, Ziwei and Li, Chunyuan},
month={April},
year={2024}
}
```
```BibTeX
@misc{liu2024llavanext,
title={LLaVA-NeXT: Improved reasoning, OCR, and world knowledge},
url={https://llava-vl.github.io/blog/2024-01-30-llava-next/},
author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Li, Bo and Zhang, Yuanhan and Shen, Sheng and Lee, Yong Jae},
month={January},
year={2024}
}
``` |