File size: 8,029 Bytes
5c77409
9620ec6
 
6ae32f6
3378b61
babe571
 
9620ec6
 
 
 
aba3cde
9620ec6
aba3cde
9620ec6
aba3cde
9620ec6
 
61a33f7
d727650
 
9620ec6
8b3815b
aba3cde
 
9620ec6
 
 
d727650
9620ec6
 
aba3cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9620ec6
 
 
 
 
 
 
 
 
4356641
 
9620ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d727650
6774b71
d727650
 
 
 
 
 
 
 
 
 
 
 
 
 
9620ec6
 
 
aba3cde
9620ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
aba3cde
 
 
dc5c07d
 
 
 
 
 
 
 
 
 
aba3cde
dc5c07d
9620ec6
6774b71
9620ec6
 
 
 
 
 
 
 
 
 
d727650
 
 
 
dc5c07d
d727650
 
 
 
 
 
 
 
 
 
 
 
9620ec6
dc5c07d
 
d727650
 
9620ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aba3cde
 
9620ec6
 
 
 
aba3cde
 
9620ec6
aba3cde
 
 
 
 
 
 
 
 
9620ec6
aba3cde
 
 
 
 
 
 
 
babe571
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
---
language:
- en
license: llama2
pipeline_tag: video-text-to-text
datasets:
- lmms-lab/VideoChatGPT
---

# LLaVA-NeXT-Video Model Card

Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1CZggLHrjxMReG-FNOmqSOdi4z7NPq6SO?usp=sharing)

Disclaimer: The team releasing LLaVa-NeXT-Video did not write a model card for this model so this model card has been written by the Hugging Face team.

## πŸ“„ Model details

**Model type:**
LLaVA-Next-Video is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data. The model is buit on top of LLaVa-NeXT by tuning on a mix of video and image data to achieve better video understanding capabilities. The videos were sampled uniformly to be 32 frames per clip.
The model is a current SOTA among open-source models on [VideoMME bench](https://arxiv.org/abs/2405.21075).
Base LLM: [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5)

![llava_next_video_arch](demo.png)


**Model date:**
LLaVA-Next-Video-7B was trained in April 2024.

**Paper or resources for more information:** https://github.com/LLaVA-VL/LLaVA-NeXT


## πŸ“š Training dataset

### Image
- 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
- 158K GPT-generated multimodal instruction-following data.
- 500K academic-task-oriented VQA data mixture.
- 50K GPT-4V data mixture.
- 40K ShareGPT data.

### Video
- 100K VideoChatGPT-Instruct.

## πŸ“Š Evaluation dataset
A collection of 4 benchmarks, including 3 academic VQA benchmarks and 1 captioning benchmark.



## πŸš€ How to use the model

First, make sure to have `transformers >= 4.42.0`. 
The model supports multi-visual and multi-prompt generation. Meaning that you can pass multiple images/videos in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` or `<video>` to the location where you want to query images/videos:

Below is an example script to run generation in `float16` precision on a GPU device:

```python
import av
import torch
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import LlavaNextVideoProcessor, LlavaNextVideoForConditionalGeneration

model_id = "llava-hf/LLaVA-NeXT-Video-7B-hf"

model = LlavaNextVideoForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True, 
).to(0)

processor = LlavaNextVideoProcessor.from_pretrained(model_id)

def read_video_pyav(container, indices):
    '''
    Decode the video with PyAV decoder.
    Args:
        container (`av.container.input.InputContainer`): PyAV container.
        indices (`List[int]`): List of frame indices to decode.
    Returns:
        result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
    '''
    frames = []
    container.seek(0)
    start_index = indices[0]
    end_index = indices[-1]
    for i, frame in enumerate(container.decode(video=0)):
        if i > end_index:
            break
        if i >= start_index and i in indices:
            frames.append(frame)
    return np.stack([x.to_ndarray(format="rgb24") for x in frames])


# define a chat history and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image", "video") 
conversation = [
    {

        "role": "user",
        "content": [
            {"type": "text", "text": "Why is this video funny?"},
            {"type": "video"},
            ],
    },
]

prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
container = av.open(video_path)

# sample uniformly 8 frames from the video, can sample more for longer videos
total_frames = container.streams.video[0].frames
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
clip = read_video_pyav(container, indices)
inputs_video = processor(text=prompt, videos=clip, padding=True, return_tensors="pt").to(model.device)

output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```

### Inference with images as inputs

To generate from images use the below code after loading the model as shown above:

```python
import requests
from PIL import Image

conversation = [
    {
      "role": "user",
      "content": [
          {"type": "text", "text": "What are these?"},
          {"type": "image"},
        ],
    },
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs_image = processor(text=prompt, images=raw_image, return_tensors='pt').to(0, torch.float16)

output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```

### Inference with images and videos as inputs

To generate from images and videos in one generate use the below code after loading the model as shown above:

```python
conversation_1 = [
    {
      "role": "user",
      "content": [
          {"type": "text", "text": "What's the content of the image>"},
          {"type": "image"},
        ],
    }
]
conversation_2 = [
    {
      "role": "user",
      "content": [
          {"type": "text", "text": "Why is this video funny?"},
          {"type": "video"},
        ],
    },
]
prompt_1 = processor.apply_chat_template(conversation_1, add_generation_prompt=True)
prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)

s = processor(text=[prompt_1, prompt_2], images=image, videos=clip, padding=True, return_tensors="pt").to(model.device)

# Generate
generate_ids = model.generate(**inputs, max_new_tokens=100)
out = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(out)
```

### Model optimization

#### 4-bit quantization through `bitsandbytes` library

First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with: 

```diff
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True,
+   load_in_4bit=True
)
```

#### Use Flash-Attention 2 to further speed-up generation

First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with: 

```diff
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True,
+   use_flash_attention_2=True
).to(0)
```


## πŸ”’ License
Llama 2 is licensed under the LLAMA 2 Community License, 
Copyright (c) Meta Platforms, Inc. All Rights Reserved.


## ✏️ Citation
If you find our paper and code useful in your research:

```BibTeX
@misc{zhang2024llavanextvideo,
  title={LLaVA-NeXT: A Strong Zero-shot Video Understanding Model},
  url={https://llava-vl.github.io/blog/2024-04-30-llava-next-video/},
  author={Zhang, Yuanhan and Li, Bo and Liu, haotian and Lee, Yong jae and Gui, Liangke and Fu, Di and Feng, Jiashi and Liu, Ziwei and Li, Chunyuan},
  month={April},
  year={2024}
}
```

```BibTeX
@misc{liu2024llavanext,
    title={LLaVA-NeXT: Improved reasoning, OCR, and world knowledge},
    url={https://llava-vl.github.io/blog/2024-01-30-llava-next/},
    author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Li, Bo and Zhang, Yuanhan and Shen, Sheng and Lee, Yong Jae},
    month={January},
    year={2024}
}
```