RaushanTurganbay HF staff commited on
Commit
27e693d
·
verified ·
1 Parent(s): 37d62cc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +165 -3
README.md CHANGED
@@ -1,3 +1,165 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - zh
5
+ license: apache-2.0
6
+ tags:
7
+ - vision
8
+ - image-text-to-text
9
+ datasets:
10
+ - lmms-lab/LLaVA-OneVision-Data
11
+ pipeline_tag: image-text-to-text
12
+ inference: false
13
+ arxiv: 2408.03326
14
+ ---
15
+ # LLaVA-Onevision Model Card
16
+
17
+ ![image/png](llava_onevision_arch.png)
18
+
19
+ Below is the model card of 72B LLaVA-Onevision model which is copied from the original LLaVA-Onevision model card that you can find [here](https://huggingface.co/lmms-lab/llava-onevision-qwen2-72b-ov).
20
+
21
+
22
+
23
+ ## Model details
24
+
25
+ **Model type:**
26
+ LLaVA-Onevision is an open-source multimodal LLM trained by fine-tuning Qwen2 on GPT-generated multimodal instruction-following data.
27
+ LLaVA-OneVision is the first single model that can simultaneously push the performance boundaries of open LMMs in three important computer
28
+ vision scenarios: single-image, multi-image, and video scenarios. Importantly, the design of LLaVA-OneVision allows strong transfer learning
29
+ across different modalities/scenarios, yielding new emerging capabilities. In particular, strong video understanding and cross-scenario
30
+ capabilities are demonstrated through task transfer from images to videos.
31
+
32
+ **Model date:**
33
+ LLaVA-Onevision-72b-si was added in August 2024.
34
+
35
+ **Paper or resources for more information:**
36
+ https://llava-vl.github.io/
37
+
38
+ - **Architecture:** SO400M + Qwen2
39
+ - **Pretraining Stage:** LCS-558K, 1 epoch, projector
40
+ - **Mid Stage:** A mixture of 4.7M high-quality synthetic data, 1 epoch, full model
41
+ - **Final-Image Stage:** A mixture of 3.6M single-image data, 1 epoch, full model
42
+ - **OneVision Stage:** A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model
43
+ - **Precision:** bfloat16
44
+
45
+
46
+ ## How to use the model
47
+
48
+ First, make sure to have `transformers` installed from source or `transformers >= 4.45.0`.
49
+ The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template by applyong chat template:
50
+
51
+ ### Using `pipeline`:
52
+
53
+ Below we used [`"llava-hf/llava-onevision-qwen2-72b-ov-hf"`](https://huggingface.co/llava-hf/llava-onevision-qwen2-72b-ov-hf) checkpoint.
54
+
55
+ ```python
56
+ from transformers import pipeline
57
+ from PIL import Image
58
+ import requests
59
+
60
+ model_id = "llava-hf/llava-onevision-qwen2-72b-ov-hf"
61
+ pipe = pipeline("image-to-text", model=model_id)
62
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
63
+ image = Image.open(requests.get(url, stream=True).raw)
64
+
65
+ # Define a chat history and use `apply_chat_template` to get correctly formatted prompt
66
+ # Each value in "content" has to be a list of dicts with types ("text", "image")
67
+ conversation = [
68
+ {
69
+
70
+ "role": "user",
71
+ "content": [
72
+ {"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
73
+ {"type": "image"},
74
+ ],
75
+ },
76
+ ]
77
+ prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
78
+
79
+ outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
80
+ print(outputs)
81
+ >>> {"generated_text": "user\n\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nassistant\nLava"}
82
+ ```
83
+
84
+ ### Using pure `transformers`:
85
+
86
+ Below is an example script to run generation in `float16` precision on a GPU device:
87
+
88
+ ```python
89
+ import requests
90
+ from PIL import Image
91
+
92
+ import torch
93
+ from transformers import AutoProcessor, LlavaNextForConditionalGeneration
94
+
95
+ model_id = "llava-hf/llava-onevision-qwen2-72b-ov-hf"
96
+ model = LlavaNextForConditionalGeneration.from_pretrained(
97
+ model_id,
98
+ torch_dtype=torch.float16,
99
+ low_cpu_mem_usage=True,
100
+ ).to(0)
101
+
102
+ processor = AutoProcessor.from_pretrained(model_id)
103
+
104
+ # Define a chat history and use `apply_chat_template` to get correctly formatted prompt
105
+ # Each value in "content" has to be a list of dicts with types ("text", "image")
106
+ conversation = [
107
+ {
108
+
109
+ "role": "user",
110
+ "content": [
111
+ {"type": "text", "text": "What are these?"},
112
+ {"type": "image"},
113
+ ],
114
+ },
115
+ ]
116
+ prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
117
+
118
+ image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
119
+ raw_image = Image.open(requests.get(image_file, stream=True).raw)
120
+ inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
121
+
122
+ output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
123
+ print(processor.decode(output[0][2:], skip_special_tokens=True))
124
+ ```
125
+
126
+ ### Model optimization
127
+
128
+ #### 4-bit quantization through `bitsandbytes` library
129
+
130
+ First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
131
+
132
+ ```diff
133
+ model = LlavaNextForConditionalGeneration.from_pretrained(
134
+ model_id,
135
+ torch_dtype=torch.float16,
136
+ low_cpu_mem_usage=True,
137
+ + load_in_4bit=True
138
+ )
139
+ ```
140
+
141
+ #### Use Flash-Attention 2 to further speed-up generation
142
+
143
+ First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
144
+
145
+ ```diff
146
+ model = LlavaNextForConditionalGeneration.from_pretrained(
147
+ model_id,
148
+ torch_dtype=torch.float16,
149
+ low_cpu_mem_usage=True,
150
+ + use_flash_attention_2=True
151
+ ).to(0)
152
+ ```
153
+
154
+ # Citation
155
+ ```
156
+ @misc{li2024llavaonevisioneasyvisualtask,
157
+ title={LLaVA-OneVision: Easy Visual Task Transfer},
158
+ author={Bo Li and Yuanhan Zhang and Dong Guo and Renrui Zhang and Feng Li and Hao Zhang and Kaichen Zhang and Yanwei Li and Ziwei Liu and Chunyuan Li},
159
+ year={2024},
160
+ eprint={2408.03326},
161
+ archivePrefix={arXiv},
162
+ primaryClass={cs.CV},
163
+ url={https://arxiv.org/abs/2408.03326},
164
+ }
165
+ ```