Dongfu Jiang
commited on
Commit
•
0ef6e21
1
Parent(s):
bb45a4c
Update README.md
Browse files
README.md
CHANGED
@@ -36,6 +36,54 @@ Inspired by [DeBERTa Reward Model Series](https://huggingface.co/OpenAssistant/r
|
|
36 |
| [PairRM](https://huggingface.co/llm-blender/pair-reward-model/) (This model) | 1224 | 412 | 2048 |
|
37 |
|
38 |
### Performance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
## Usage Example
|
@@ -133,7 +181,8 @@ print(outputs[0])
|
|
133 |
```
|
134 |
|
135 |
### Use case 3: RLHF
|
136 |
-
PairRM has been trained on various high-quality and large-scale dataset with human preference annotations and exhibits great correlation with human preferences with an extremly small model size (0.4B), approching the performance of GPT-4.
|
|
|
137 |
With a `blender.compare()` function, you can easily apply PairRM to poopular RLHF toolkits like [trl](https://huggingface.co/docs/trl/index).
|
138 |
|
139 |
**🔥 Check more details on our example jupyter notebook usage: [`blender_usage.ipynb`](https://github.com/yuchenlin/LLM-Blender/blob/main/blender_usage.ipynb)**
|
|
|
36 |
| [PairRM](https://huggingface.co/llm-blender/pair-reward-model/) (This model) | 1224 | 412 | 2048 |
|
37 |
|
38 |
### Performance
|
39 |
+
PairRM has been trained on various high-quality and large-scale dataset with human preference annotations and exhibits great correlation with human preferences
|
40 |
+
with an extremly small model size (0.4B), approching the performance of GPT-4.
|
41 |
+
|
42 |
+
We test the pairwise comparison on
|
43 |
+
- [Auto-J pairwise testdata](https://github.com/GAIR-NLP/auto-j#pairwise-response-comparison)
|
44 |
+
- [HHH-alignment](https://huggingface.co/datasets/HuggingFaceH4/hhh_alignment)
|
45 |
+
- [MT-bench-human-judgements](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments)
|
46 |
+
|
47 |
+
#### Auto-J Pairwise test data performance
|
48 |
+
|
49 |
+
| Model | Summ | Exam | Code | Rewriting | Crea W | Func W | Comm | NLP | Overall |
|
50 |
+
|:---------------------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-----:|:--------:|:---------:|
|
51 |
+
| Closed -source Models | | | | | | | | | |
|
52 |
+
| ChatGPT | 33.3 | 40.3 | 36.6 | 31.6 | 48.2 | 40.4 | 47.6 | 45.8 | 42.7 |
|
53 |
+
| Claude -2 | 30.6 | 36.1 | 41.7 | 34.2 | 48.1 | 42.5 | 40.6 | 48.5 | 42.4 |
|
54 |
+
| GPT -4 | 59.7 | 51.4 | 69.2 | 58.3 | 66.7 | 60.4 | 58.3 | 65.2 | 61.9 |
|
55 |
+
| Open -source Models | | | | | | | | | |
|
56 |
+
| SteamSHP | 33.3 | 29.2 | 26.7 | 33.3 | 40.7 | 31.3 | 51.4 | 51.9 | 40.6 |
|
57 |
+
| PandaLM | 29.2 | 33.3 | 31.7 | 23.3 | 43.5 | 32.9 | 44.8 | 48.9 | 38.9 |
|
58 |
+
| LLaMA -2-Chat -13B | 20.8 | 27.8 | 19.2 | 20 | 31.5 | 27.5 | 35.8 | 31.8 | 29 |
|
59 |
+
| Vicuna -13B-v1.5 | 30.6 | 23.6 | 35 | 28.3 | 36.1 | 37.5 | 45.5 | 39.8 | 37.3 |
|
60 |
+
| WizardLM -13B-v1.2 | 22.2 | 20.8 | 32.5 | 19.2 | 28.7 | 25.4 | 29.2 | 33 | 27.8 |
|
61 |
+
| LLAMA -2-chat -70B | 34.7 | 33.3 | 36.7 | 35.8 | 51.4 | 54.2 | 47.2 | 47.7 | 45.9 |
|
62 |
+
| AUTO -J 1 | 45.8 | 38.9 | 59.2 | 47.5 | 54.6 | 57.1 | 58 | 57.6 | 54.8 |
|
63 |
+
| PairRM | **56.94** | **52.78** | **58.33** | **55.83** | **61.57** | **59.17** | 57.64 | **62.5** | **59.05** |
|
64 |
+
|
65 |
+
#### HHH-Alignment and MT-bench human judgements
|
66 |
+
|
67 |
+
| Evaluator LM | HHH ALIGNMENT | | | | | MT BENCH HUMAN JUDG . |
|
68 |
+
|:-------------------------:|:-------------:|:---------:|:---------:|:--------:|:-----------:|:---------------------:|
|
69 |
+
| | Help . | Harm . | Hon . | Other | Total Avg . | Human Preference |
|
70 |
+
| RANDOM | 50 | 50 | 50 | 50 | 50 | 34.26 |
|
71 |
+
| STANFORDNLP REWARD MODEL | 69.49 | 60.34 | 52.46 | 51.16 | 58.82 | 44.79 |
|
72 |
+
| ALMOST REWARD MODEL | 74.58 | 67.24 | 78.69 | 86.05 | 76.02 | 49.9 |
|
73 |
+
| LLAMA2 -CHAT 7B | 66.1 | 81.03 | 70.49 | 74.42 | 72.85 | 51.78 |
|
74 |
+
| LLAMA2 -CHAT 13B | 74.58 | 87.93 | 55.74 | 79.07 | 73.76 | 52.34 |
|
75 |
+
| LLAMA2 -CHAT 70B | 66.1 | 89.66 | 67.21 | 74.42 | 74.21 | 53.67 |
|
76 |
+
| LLAMA2 -CHAT 13B+COARSE . | 68.74 | 68.97 | 65.57 | 67.44 | 67.42 | 46.89 |
|
77 |
+
| GPT -3.5-TURBO -0613 | 76.27 | 87.93 | 67.21 | 86.05 | 78.73 | 57.12 |
|
78 |
+
| PROMETHEUS 7B | 69.49 | 84.48 | 78.69 | 90.7 | 80.09 | 55.14 |
|
79 |
+
| PROMETHEUS 13B | 81.36 | 82.76 | 75.41 | 76.74 | 79.19 | 57.72 |
|
80 |
+
| PairRM | **84.75** | **84.48** | **80.33** | **90.7** | **84.62** | **59** |
|
81 |
+
| GPT -4-0613 | 91.53 | 93.1 | 85.25 | 83.72 | 88.69 | 63.87 |
|
82 |
+
|
83 |
+
While PairRM is a extremely small model (0.4B) based on deberta, the pairwise comparison aggrement performance approches GPT-4's performance!
|
84 |
+
Two reasons to attribute:
|
85 |
+
- Our PairRM specically designed model arch for pairwise comparison through bidirectional attention (See paper for more details)
|
86 |
+
- The high-quality and large-scale human preference annotation data it was train on (see tags for list)
|
87 |
|
88 |
|
89 |
## Usage Example
|
|
|
181 |
```
|
182 |
|
183 |
### Use case 3: RLHF
|
184 |
+
PairRM has been trained on various high-quality and large-scale dataset with human preference annotations and exhibits great correlation with human preferences with an extremly small model size (0.4B), approching the performance of GPT-4.
|
185 |
+
We believe PairRM will power the alignment of LLM in an efficient and effective way.
|
186 |
With a `blender.compare()` function, you can easily apply PairRM to poopular RLHF toolkits like [trl](https://huggingface.co/docs/trl/index).
|
187 |
|
188 |
**🔥 Check more details on our example jupyter notebook usage: [`blender_usage.ipynb`](https://github.com/yuchenlin/LLM-Blender/blob/main/blender_usage.ipynb)**
|