Taka008 commited on
Commit
07a2079
·
verified ·
1 Parent(s): f4ef758

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +167 -0
README.md CHANGED
@@ -1,3 +1,170 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ - ja
6
+ programming_language:
7
+ - C
8
+ - C++
9
+ - C#
10
+ - Go
11
+ - Java
12
+ - JavaScript
13
+ - Lua
14
+ - PHP
15
+ - Python
16
+ - Ruby
17
+ - Rust
18
+ - Scala
19
+ - TypeScript
20
+ library_name: transformers
21
+ pipeline_tag: text-generation
22
+ inference: false
23
+ datasets:
24
+ - databricks/databricks-dolly-15k
25
+ - llm-jp/databricks-dolly-15k-ja
26
+ - llm-jp/oasst1-21k-en
27
+ - llm-jp/oasst1-21k-ja
28
  ---
29
+
30
+ # llm-jp-13b-instruct-full-dolly-ichikara_004_001_single-oasst-oasst2-v2.0
31
+
32
+ This repository provides large language models developed by [LLM-jp](https://llm-jp.nii.ac.jp/), a collaborative project launched in Japan.
33
+
34
+ | Model Variant |
35
+ | :--- |
36
+ |**Instruction models ver1.1**|
37
+ | [llm-jp-13b-dpo-lora-hh_rlhf_ja-v1.1](https://huggingface.co/llm-jp/llm-jp-13b-dpo-lora-hh_rlhf_ja-v1.1)|
38
+ | [llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1) |
39
+ | [llm-jp-13b-instruct-lora-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1) |
40
+ |**Instruction models ver1.0**|
41
+ | [llm-jp-13b-instruct-full-jaster-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-jaster-v1.0) |
42
+ | [llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0) |
43
+ | [llm-jp-13b-instruct-full-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-dolly-oasst-v1.0) |
44
+ | [llm-jp-13b-instruct-lora-jaster-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-jaster-v1.0) |
45
+ | [llm-jp-13b-instruct-lora-jaster-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-jaster-dolly-oasst-v1.0) |
46
+ | [llm-jp-13b-instruct-lora-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-dolly-oasst-v1.0) |
47
+
48
+
49
+ | |
50
+ | :--- |
51
+ |**Pre-trained models**|
52
+ | [llm-jp-13b-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-v1.0) |
53
+ | [llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) |
54
+ Checkpoints format: Hugging Face Transformers (Megatron-DeepSpeed format models are available [here](https://huggingface.co/llm-jp/llm-jp-13b-v1.0-mdsfmt))
55
+
56
+
57
+ ## Required Libraries and Their Versions
58
+
59
+ - torch>=2.0.0
60
+ - transformers>=4.34.0
61
+ - tokenizers>=0.14.0
62
+ - accelerate==0.23.0
63
+
64
+ ## Usage
65
+
66
+ ```python
67
+ import torch
68
+ from transformers import AutoTokenizer, AutoModelForCausalLM
69
+ tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1")
70
+ model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1", device_map="auto", torch_dtype=torch.float16)
71
+ text = "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n\n### 指示:\n{instruction}\n\n### 応答:\n".format(instruction="自然言語処理とは何か")
72
+ tokenized_input = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt").to(model.device)
73
+ with torch.no_grad():
74
+ output = model.generate(
75
+ tokenized_input,
76
+ max_new_tokens=512,
77
+ do_sample=True,
78
+ top_p=0.95,
79
+ temperature=0.7,
80
+ repetition_penalty=1.1,
81
+ )[0]
82
+ print(tokenizer.decode(output))
83
+ ```
84
+
85
+
86
+ ## Model Details
87
+
88
+ - **Model type:** Transformer-based Language Model
89
+ - **Total seen tokens:** 300B
90
+
91
+ |Model|Params|Layers|Hidden size|Heads|Context length|
92
+ |:---:|:---:|:---:|:---:|:---:|:---:|
93
+ |13b model|13b|40|5120|40|2048|
94
+ |1.3b model|1.3b|24|2048|16|2048|
95
+
96
+
97
+ ## Training
98
+
99
+ - **Pre-training:**
100
+ - **Hardware:** 96 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/))
101
+ - **Software:** Megatron-DeepSpeed
102
+
103
+ - **Instruction tuning:**
104
+ - **Hardware:** 8 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/))
105
+ - **Software:** [TRL](https://github.com/huggingface/trl), [PEFT](https://github.com/huggingface/peft), and [DeepSpeed](https://github.com/microsoft/DeepSpeed)
106
+
107
+ ## Tokenizer
108
+ The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
109
+ The vocabulary entries were converted from [`llm-jp-tokenizer v2.1 (50k)`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v2.1).
110
+ Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-ja-tokenizer` for details on the vocabulary construction procedure.
111
+ - **Model:** Hugging Face Fast Tokenizer using Unigram byte-fallback model which requires `tokenizers>=0.14.0`
112
+ - **Training algorithm:** SentencePiece Unigram byte-fallback
113
+ - **Training data:** A subset of the datasets for model pre-training
114
+ - **Vocabulary size:** 50,570 (mixed vocabulary of Japanese, English, and source code)
115
+
116
+
117
+ ## Datasets
118
+
119
+ ### Pre-training
120
+
121
+ The models have been pre-trained using a blend of the following datasets.
122
+
123
+ | Language | Dataset | Tokens|
124
+ |:---:|:---:|:---:|
125
+ |Japanese|[Wikipedia](https://huggingface.co/datasets/wikipedia)|1.5B
126
+ ||[mC4](https://huggingface.co/datasets/mc4)|136B
127
+ |English|[Wikipedia](https://huggingface.co/datasets/wikipedia)|5B
128
+ ||[The Pile](https://huggingface.co/datasets/EleutherAI/pile)|135B
129
+ |Codes|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|10B
130
+
131
+ The pre-training was continuously conducted using a total of 10 folds of non-overlapping data, each consisting of approximately 27-28B tokens.
132
+ We finalized the pre-training with additional (potentially) high-quality 27B tokens data obtained from the identical source datasets listed above used for the 10-fold data.
133
+
134
+ ### Instruction tuning
135
+
136
+ The models have been fine-tuned on the following datasets.
137
+
138
+ | Language | Dataset | description |
139
+ |:---|:---:|:---:|
140
+ |Japanese|[jaster](https://github.com/llm-jp/llm-jp-eval)| An automatically transformed data from the existing Japanese NLP datasets |
141
+ |English|[databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k)| - |
142
+ |Japanese|[databricks-dolly-15k-ja](https://huggingface.co/datasets/llm-jp/databricks-dolly-15k-ja)| A translated one by DeepL in LLM-jp |
143
+ |English|[oasst1-21k-en](https://huggingface.co/datasets/llm-jp/oasst1-21k-en)| English subset of [oasst1 dataset](https://huggingface.co/datasets/OpenAssistant/oasst1) |
144
+ |Japanese|[oasst1-21k-ja](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja)| A translated one by DeepL in LLM-jp |
145
+ |Japanese|[ichikara_003_001](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/)| ichikara-instruction dataset (ver.003-001)
146
+ |Japanese|[hh-rlhf-12k-ja](https://huggingface.co/datasets/llm-jp/hh-rlhf-12k-ja)| A translated one by DeepL in LLM-jp |
147
+
148
+
149
+ ## Evaluation
150
+ You can view the evaluation results of several LLMs on this [leaderboard](http://wandb.me/llm-jp-leaderboard). We used [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) for the evaluation.
151
+
152
+ ## Risks and Limitations
153
+
154
+ The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
155
+
156
+
157
+ ## Send Questions to
158
+
159
+ llm-jp(at)nii.ac.jp
160
+
161
+
162
+ ## License
163
+
164
+ [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
165
+
166
+
167
+ ## Model Card Authors
168
+ *The names are listed in alphabetical order.*
169
+
170
+ Hirokazu Kiyomaru, Hiroshi Matsuda, Jun Suzuki, Namgi Han, Saku Sugawara, Shota Sasaki, Shuhei Kurita, Taishi Nakamura, Takashi Kodama, Takumi Okamoto.