Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,170 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- ja
|
6 |
+
programming_language:
|
7 |
+
- C
|
8 |
+
- C++
|
9 |
+
- C#
|
10 |
+
- Go
|
11 |
+
- Java
|
12 |
+
- JavaScript
|
13 |
+
- Lua
|
14 |
+
- PHP
|
15 |
+
- Python
|
16 |
+
- Ruby
|
17 |
+
- Rust
|
18 |
+
- Scala
|
19 |
+
- TypeScript
|
20 |
+
library_name: transformers
|
21 |
+
pipeline_tag: text-generation
|
22 |
+
inference: false
|
23 |
+
datasets:
|
24 |
+
- databricks/databricks-dolly-15k
|
25 |
+
- llm-jp/databricks-dolly-15k-ja
|
26 |
+
- llm-jp/oasst1-21k-en
|
27 |
+
- llm-jp/oasst1-21k-ja
|
28 |
---
|
29 |
+
|
30 |
+
# llm-jp-13b-instruct-full-dolly-ichikara_004_001_single-oasst-oasst2-v2.0
|
31 |
+
|
32 |
+
This repository provides large language models developed by [LLM-jp](https://llm-jp.nii.ac.jp/), a collaborative project launched in Japan.
|
33 |
+
|
34 |
+
| Model Variant |
|
35 |
+
| :--- |
|
36 |
+
|**Instruction models ver1.1**|
|
37 |
+
| [llm-jp-13b-dpo-lora-hh_rlhf_ja-v1.1](https://huggingface.co/llm-jp/llm-jp-13b-dpo-lora-hh_rlhf_ja-v1.1)|
|
38 |
+
| [llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1) |
|
39 |
+
| [llm-jp-13b-instruct-lora-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1) |
|
40 |
+
|**Instruction models ver1.0**|
|
41 |
+
| [llm-jp-13b-instruct-full-jaster-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-jaster-v1.0) |
|
42 |
+
| [llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0) |
|
43 |
+
| [llm-jp-13b-instruct-full-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-dolly-oasst-v1.0) |
|
44 |
+
| [llm-jp-13b-instruct-lora-jaster-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-jaster-v1.0) |
|
45 |
+
| [llm-jp-13b-instruct-lora-jaster-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-jaster-dolly-oasst-v1.0) |
|
46 |
+
| [llm-jp-13b-instruct-lora-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-dolly-oasst-v1.0) |
|
47 |
+
|
48 |
+
|
49 |
+
| |
|
50 |
+
| :--- |
|
51 |
+
|**Pre-trained models**|
|
52 |
+
| [llm-jp-13b-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-v1.0) |
|
53 |
+
| [llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) |
|
54 |
+
Checkpoints format: Hugging Face Transformers (Megatron-DeepSpeed format models are available [here](https://huggingface.co/llm-jp/llm-jp-13b-v1.0-mdsfmt))
|
55 |
+
|
56 |
+
|
57 |
+
## Required Libraries and Their Versions
|
58 |
+
|
59 |
+
- torch>=2.0.0
|
60 |
+
- transformers>=4.34.0
|
61 |
+
- tokenizers>=0.14.0
|
62 |
+
- accelerate==0.23.0
|
63 |
+
|
64 |
+
## Usage
|
65 |
+
|
66 |
+
```python
|
67 |
+
import torch
|
68 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1")
|
70 |
+
model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1", device_map="auto", torch_dtype=torch.float16)
|
71 |
+
text = "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n\n### 指示:\n{instruction}\n\n### 応答:\n".format(instruction="自然言語処理とは何か")
|
72 |
+
tokenized_input = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt").to(model.device)
|
73 |
+
with torch.no_grad():
|
74 |
+
output = model.generate(
|
75 |
+
tokenized_input,
|
76 |
+
max_new_tokens=512,
|
77 |
+
do_sample=True,
|
78 |
+
top_p=0.95,
|
79 |
+
temperature=0.7,
|
80 |
+
repetition_penalty=1.1,
|
81 |
+
)[0]
|
82 |
+
print(tokenizer.decode(output))
|
83 |
+
```
|
84 |
+
|
85 |
+
|
86 |
+
## Model Details
|
87 |
+
|
88 |
+
- **Model type:** Transformer-based Language Model
|
89 |
+
- **Total seen tokens:** 300B
|
90 |
+
|
91 |
+
|Model|Params|Layers|Hidden size|Heads|Context length|
|
92 |
+
|:---:|:---:|:---:|:---:|:---:|:---:|
|
93 |
+
|13b model|13b|40|5120|40|2048|
|
94 |
+
|1.3b model|1.3b|24|2048|16|2048|
|
95 |
+
|
96 |
+
|
97 |
+
## Training
|
98 |
+
|
99 |
+
- **Pre-training:**
|
100 |
+
- **Hardware:** 96 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/))
|
101 |
+
- **Software:** Megatron-DeepSpeed
|
102 |
+
|
103 |
+
- **Instruction tuning:**
|
104 |
+
- **Hardware:** 8 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/))
|
105 |
+
- **Software:** [TRL](https://github.com/huggingface/trl), [PEFT](https://github.com/huggingface/peft), and [DeepSpeed](https://github.com/microsoft/DeepSpeed)
|
106 |
+
|
107 |
+
## Tokenizer
|
108 |
+
The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
|
109 |
+
The vocabulary entries were converted from [`llm-jp-tokenizer v2.1 (50k)`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v2.1).
|
110 |
+
Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-ja-tokenizer` for details on the vocabulary construction procedure.
|
111 |
+
- **Model:** Hugging Face Fast Tokenizer using Unigram byte-fallback model which requires `tokenizers>=0.14.0`
|
112 |
+
- **Training algorithm:** SentencePiece Unigram byte-fallback
|
113 |
+
- **Training data:** A subset of the datasets for model pre-training
|
114 |
+
- **Vocabulary size:** 50,570 (mixed vocabulary of Japanese, English, and source code)
|
115 |
+
|
116 |
+
|
117 |
+
## Datasets
|
118 |
+
|
119 |
+
### Pre-training
|
120 |
+
|
121 |
+
The models have been pre-trained using a blend of the following datasets.
|
122 |
+
|
123 |
+
| Language | Dataset | Tokens|
|
124 |
+
|:---:|:---:|:---:|
|
125 |
+
|Japanese|[Wikipedia](https://huggingface.co/datasets/wikipedia)|1.5B
|
126 |
+
||[mC4](https://huggingface.co/datasets/mc4)|136B
|
127 |
+
|English|[Wikipedia](https://huggingface.co/datasets/wikipedia)|5B
|
128 |
+
||[The Pile](https://huggingface.co/datasets/EleutherAI/pile)|135B
|
129 |
+
|Codes|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|10B
|
130 |
+
|
131 |
+
The pre-training was continuously conducted using a total of 10 folds of non-overlapping data, each consisting of approximately 27-28B tokens.
|
132 |
+
We finalized the pre-training with additional (potentially) high-quality 27B tokens data obtained from the identical source datasets listed above used for the 10-fold data.
|
133 |
+
|
134 |
+
### Instruction tuning
|
135 |
+
|
136 |
+
The models have been fine-tuned on the following datasets.
|
137 |
+
|
138 |
+
| Language | Dataset | description |
|
139 |
+
|:---|:---:|:---:|
|
140 |
+
|Japanese|[jaster](https://github.com/llm-jp/llm-jp-eval)| An automatically transformed data from the existing Japanese NLP datasets |
|
141 |
+
|English|[databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k)| - |
|
142 |
+
|Japanese|[databricks-dolly-15k-ja](https://huggingface.co/datasets/llm-jp/databricks-dolly-15k-ja)| A translated one by DeepL in LLM-jp |
|
143 |
+
|English|[oasst1-21k-en](https://huggingface.co/datasets/llm-jp/oasst1-21k-en)| English subset of [oasst1 dataset](https://huggingface.co/datasets/OpenAssistant/oasst1) |
|
144 |
+
|Japanese|[oasst1-21k-ja](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja)| A translated one by DeepL in LLM-jp |
|
145 |
+
|Japanese|[ichikara_003_001](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/)| ichikara-instruction dataset (ver.003-001)
|
146 |
+
|Japanese|[hh-rlhf-12k-ja](https://huggingface.co/datasets/llm-jp/hh-rlhf-12k-ja)| A translated one by DeepL in LLM-jp |
|
147 |
+
|
148 |
+
|
149 |
+
## Evaluation
|
150 |
+
You can view the evaluation results of several LLMs on this [leaderboard](http://wandb.me/llm-jp-leaderboard). We used [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) for the evaluation.
|
151 |
+
|
152 |
+
## Risks and Limitations
|
153 |
+
|
154 |
+
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
|
155 |
+
|
156 |
+
|
157 |
+
## Send Questions to
|
158 |
+
|
159 |
+
llm-jp(at)nii.ac.jp
|
160 |
+
|
161 |
+
|
162 |
+
## License
|
163 |
+
|
164 |
+
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
165 |
+
|
166 |
+
|
167 |
+
## Model Card Authors
|
168 |
+
*The names are listed in alphabetical order.*
|
169 |
+
|
170 |
+
Hirokazu Kiyomaru, Hiroshi Matsuda, Jun Suzuki, Namgi Han, Saku Sugawara, Shota Sasaki, Shuhei Kurita, Taishi Nakamura, Takashi Kodama, Takumi Okamoto.
|