llm-wizard commited on
Commit
7899b34
1 Parent(s): 4db3827

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,671 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-l
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:400
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: What does it mean for a decision to not be considered arbitrary
46
+ and capricious according to the provided context?
47
+ sentences:
48
+ - "Aravind Srinivas, Founding Story and Journey of Perplexity, YOUTUBE, at 17:57\
49
+ \ (Jan. 18, 2024), \nhttps://www.youtube.com/watch?v=ygRVDIwheB4. \n17 See, e.g.,\
50
+ \ Avoiding Plagiarism Guide, APA Style 7th Edition (last visited Aug. 30, 2024),\
51
+ \ \nhttps://apastyle.apa.org/instructional-aids/avoiding-plagiarism.pdf. \n18\
52
+ \ See What is Perplexity?, supra note 1 (promoting Perplexity’s “Reliable sources”\
53
+ \ with an \nexplanation that “[e]very answer is backed by citations from trusted\
54
+ \ news outlets, academic papers, \nand established blogs”). \n19 Madhumita Murgia\
55
+ \ & Cristina Criddle, Perplexity’s popularity surges as AI search start-up takes\
56
+ \ \non Google, THE FINANCIAL TIMES (Aug. 9, 2024), https://www.ft.com/content/87af3340-2611-\n\
57
+ 4650-9ae3-036927e9f65c."
58
+ - "30 \n \nServ. Comm'n, 43 Mass. App. Ct. 300, 303 (1997). A decision is not arbitrary\
59
+ \ and capricious if \n\"reasonable minds could differ\" on the proper outcome.\
60
+ \ See Kinchla v. Board of Appeals of \nFalmouth, 11 Mass. App. Ct. 927, 927 (1981).\
61
+ \ \nIn determining the appropriate definition of general words used in a statute,\
62
+ \ the courts may \nlook to sources outside the statute such as \"their use in\
63
+ \ other legal contexts: and dictionary \ndefinitions.\" See Commonwealth v. Correia,\
64
+ \ 17 Mass.App.Ct. 233, 235 (1983) “Arbitrary” is \ndefined as subject to individual\
65
+ \ will or judgment without restriction; contingent solely upon one's \ndiscretion…\
66
+ \ having unlimited power; uncontrolled or unrestricted by law; despotic; tyrannical;"
67
+ - "purpose of providing a substitute product. \nCase 1:24-cv-07984 Document\
68
+ \ 1 Filed 10/21/24 Page 3 of 42"
69
+ - source_sentence: What percentage of applicants were admitted to Stanford last year?
70
+ sentences:
71
+ - "to which RNH is currently applying are extremely competitive and the admissions\
72
+ \ process for \nadmission into such schools is rigorous. These schools command\
73
+ \ an extensive applicant pool of \nhigh academic achievers with high test scores,\
74
+ \ grade point averages, including grades of A’s and \nB’s only. Stanford is one\
75
+ \ of the most competitive schools in the country. Last year, 4% of the \napplicant\
76
+ \ pool were admitted. Thousands of extremely well qualified, who elsewhere would\
77
+ \ be \nhighly admissible, were denied. It is essential that any applicant have\
78
+ \ the most competitive \ntranscript possible. A C+ is a red flag that will be\
79
+ \ noticed far more quickly and glaringly than the \nCase 1:24-cv-12437-WGY Document\
80
+ \ 8 Filed 10/08/24 Page 6 of 42"
81
+ - "18 \n \nupon in affirming the decision through an appeal to exclude RNH and his\
82
+ \ classmate from the NHS. \nId. at ¶145. At that time, Defendant Swanson and\
83
+ \ other Defendants knew or should have known \nthat the District inducted at least\
84
+ \ seven students into NHS, who had academic infractions on their \nrecord, one\
85
+ \ of which was because of the prior use of AI. Id. at ¶146. \nThe “committee”\
86
+ \ that adjudicated selection for NHS this year did not include teachers who \n\
87
+ know and are familiar with RNH and his classmate. Id. at ¶147. This is due to\
88
+ \ the then escalating \ncontract conflict with the Hingham Educators Association\
89
+ \ (“HEA”) where HEA engaged in an"
90
+ - "42 \n \nCERTIFICATE OF SERVICE \n \nI, Peter S. Farrell, hereby certify that\
91
+ \ I served a copy of the foregoing on all counsel of \nrecord pursuant to Local\
92
+ \ Rule 5.4(c) by causing a copy of the same to be electronically filed and \n\
93
+ served through the CM/ECF filing system to: \n \nGareth W. Notis, Esquire \nMorrison\
94
+ \ Mahoney LLP \n250 Summer Street \nBoston, MA 02210 \ngnotis@morrisonmahoney.com\
95
+ \ \n \n \n \n \n \n \n \n \n______________________________ \n \n \n \n \n \n \n\
96
+ Peter S. Farrell \n \nCase 1:24-cv-12437-WGY Document 8 Filed 10/08/24 Page\
97
+ \ 42 of 42"
98
+ - source_sentence: What is the case number for the document filed on 10/08/24?
99
+ sentences:
100
+ - Case 1:24-cv-07984 Document 1 Filed 10/21/24 Page 19 of 42
101
+ - Case 1:24-cv-12437-WGY Document 8 Filed 10/08/24 Page 33 of 42
102
+ - "11 See, e.g., Elizabeth Lopatto, Perplexity’s Grand Theft AI, THE VERGE (June\
103
+ \ 27, 2024), \nhttps://www.theverge.com/2024/6/27/24187405/perplexity-ai-twitter-lie-plagiarism\
104
+ \ \n(describing \nPerplexity as a “rent-seeking middleman on high-quality sources”\
105
+ \ that “starve[s] the primary \nsource of ad revenue”); Dhruv Mehrotra & Tim Marchman,\
106
+ \ Perplexity Is a Bullsh*t Machine, \nWIRED \n(June \n19, \n2024), \nhttps://www.wired.com/story/perplexity-is-a-bullshit-machine\
107
+ \ \n(discussing Perplexity’s reliance on recent news articles for its content\
108
+ \ as well as its tendency to \nfalsely attribute information) (asterisk added);\
109
+ \ Casey Newton, How to Stop Perplexity and save \nthe web from bad AI, PLATFORMER\
110
+ \ (June 20, 2024), https://www.platformer.news/how-to-stop-"
111
+ - source_sentence: How does Perplexity gather and compile information from authoritative
112
+ sources?
113
+ sentences:
114
+ - "utilize have been trained. To employ a RAG system, AI applications typically\
115
+ \ utilize indexed \ndatabases that house all the content from which the AI application\
116
+ \ will retrieve specific information \nto generate outputs for its users. The\
117
+ \ larger the index, the more “answers” the AI application can \nprovide. \n51.\
118
+ \ \nIn Perplexity’s words, it “scours the internet, gathering information from\
119
+ \ \nauthoritative sources like articles, websites, and journals.”6 It then, “compiles\
120
+ \ the most relevant \ninsights into a coherent, easy-to-understand answer” automatically\
121
+ \ generated from those original \nsources.7 \n52. \nThe assembling of authoritative\
122
+ \ sources for a RAG index is a distinct process from"
123
+ - "9 \n26. \nPerplexity processes subscription purchases from customers in this\
124
+ \ State and \nDistrict, transmits Plaintiffs’ copyrighted content to users in\
125
+ \ this State and District, and has a \nsignificant number of customers in this\
126
+ \ State and District. \n27. \nAs a direct and proximate result of Perplexity’s\
127
+ \ unauthorized use and/or \ndissemination of Plaintiffs’ copyrighted works and\
128
+ \ trademarks in New York and elsewhere, \nPlaintiffs have lost and will continue\
129
+ \ to lose revenue and profits from the market for content \nlicensing, subscribers,\
130
+ \ visitors, and users. \nFACTUAL ALLEGATIONS \nI. \nPlaintiffs’ Robust Businesses\
131
+ \ and Copyrighted Works \n28. \nDow Jones began in 1882 as a niche news agency\
132
+ \ in a Wall Street basement,"
133
+ - "1 \nUNITED STATES DISTRICT COURT \nSOUTHERN DISTRICT OF NEW YORK \n \nDOW JONES\
134
+ \ & COMPANY, INC. \nand NYP HOLDINGS, INC., \n \nPlaintiffs, \n \nv. \n \nPERPLEXITY\
135
+ \ AI, INC., \n \nDefendant. \n \n \n \nCivil Action No. 24-cv-7984 \n \n \nCOMPLAINT\
136
+ \ \n \nJURY TRIAL DEMANDED \n \nPlaintiffs Dow Jones & Company, Inc. (“Dow Jones”)\
137
+ \ and NYP Holdings, Inc. (“NYP \nHoldings”) (collectively, “Plaintiffs”), by and\
138
+ \ through their attorneys, Torridon Law PLLC, for \ntheir Complaint, hereby allege\
139
+ \ against Defendant Perplexity AI, Inc. (“Perplexity” or \n“Defendant”), as follows:\
140
+ \ \nNATURE OF THE ACTION \n1. \nPerplexity is a generative artificial intelligence\
141
+ \ company that claims to provide its"
142
+ - source_sentence: What recent partnership did News Corp enter into regarding licensing
143
+ content for OpenAI's applications?
144
+ sentences:
145
+ - "integrity infractions. Plain and simple. It should not take the Plaintiffs\
146
+ \ engaging counsel, \ndemanding information and forcing Hingham to investigate\
147
+ \ this matter to reveal that selection for \nNHS was a manipulated sham conducted\
148
+ \ by the Defendants, who at all times relevant were state \nactors. \nC. The Student\
149
+ \ Will Suffer Irreparable Harm If The Injunction is Not Granted \nIn order for\
150
+ \ the Plaintiffs to obtain injunctive relief, they must show that they are \"\
151
+ likely to \nsuffer irreparable injury before a decision is rendered on the merits.\"\
152
+ \ See Philips Elecs. N. Am. \nCorp. v. Halperin, 2000 Mass. Super LEXIS 574 citing\
153
+ \ Sierra Club v. Larson, 769 F. Supp. 420,"
154
+ - "licensing initiatives abound.”3 For example, News Corp recently partnered with\
155
+ \ OpenAI to license \nits content for certain uses in OpenAI’s applications. OpenAI\
156
+ \ users will have the benefit of \naccessing Plaintiffs’ content, whether quoted\
157
+ \ or summarized by OpenAI. This cooperative \nrelationship will allow OpenAI and\
158
+ \ Plaintiffs to experiment with new product experiences and \nrevenue models.\
159
+ \ \n15. \nGenerative AI technology can be developed in two ways. It can be developed\
160
+ \ \nlegally by recognizing the legitimate rights of copyright holders and by including\
161
+ \ in the AI business \nmodel the legitimate costs and benefits of licensing the\
162
+ \ copyrighted material, or it can be developed"
163
+ - "ban or prohibition on the use of AI by students. The Defendants were not trained\
164
+ \ on any policies \nor procedures for use of AI alone, never mind what they were\
165
+ \ “able to do” to students who used \nit. The entire purpose behind having\
166
+ \ such policies and procedures in place is to ensure notice, \nequity, fairness\
167
+ \ and to be sure: a level playing field for all. Making matters worse, there\
168
+ \ exists \nno adequate procedures and policies for the induction of an applicant\
169
+ \ into NHS when compared to \nother members who are inducted despite the same\
170
+ \ or similar infractions. This is a denial of student \nrights of the highest\
171
+ \ order. \n \nIn the case here, RNH was disciplined on an ad hoc and on-going\
172
+ \ basis over more than six"
173
+ model-index:
174
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
175
+ results:
176
+ - task:
177
+ type: information-retrieval
178
+ name: Information Retrieval
179
+ dataset:
180
+ name: Unknown
181
+ type: unknown
182
+ metrics:
183
+ - type: cosine_accuracy@1
184
+ value: 0.6875
185
+ name: Cosine Accuracy@1
186
+ - type: cosine_accuracy@3
187
+ value: 0.8541666666666666
188
+ name: Cosine Accuracy@3
189
+ - type: cosine_accuracy@5
190
+ value: 0.9583333333333334
191
+ name: Cosine Accuracy@5
192
+ - type: cosine_accuracy@10
193
+ value: 0.9791666666666666
194
+ name: Cosine Accuracy@10
195
+ - type: cosine_precision@1
196
+ value: 0.6875
197
+ name: Cosine Precision@1
198
+ - type: cosine_precision@3
199
+ value: 0.28472222222222215
200
+ name: Cosine Precision@3
201
+ - type: cosine_precision@5
202
+ value: 0.19166666666666665
203
+ name: Cosine Precision@5
204
+ - type: cosine_precision@10
205
+ value: 0.09791666666666665
206
+ name: Cosine Precision@10
207
+ - type: cosine_recall@1
208
+ value: 0.6875
209
+ name: Cosine Recall@1
210
+ - type: cosine_recall@3
211
+ value: 0.8541666666666666
212
+ name: Cosine Recall@3
213
+ - type: cosine_recall@5
214
+ value: 0.9583333333333334
215
+ name: Cosine Recall@5
216
+ - type: cosine_recall@10
217
+ value: 0.9791666666666666
218
+ name: Cosine Recall@10
219
+ - type: cosine_ndcg@10
220
+ value: 0.8280840444145441
221
+ name: Cosine Ndcg@10
222
+ - type: cosine_mrr@10
223
+ value: 0.7793650793650793
224
+ name: Cosine Mrr@10
225
+ - type: cosine_map@100
226
+ value: 0.7812590187590187
227
+ name: Cosine Map@100
228
+ - type: dot_accuracy@1
229
+ value: 0.6875
230
+ name: Dot Accuracy@1
231
+ - type: dot_accuracy@3
232
+ value: 0.8541666666666666
233
+ name: Dot Accuracy@3
234
+ - type: dot_accuracy@5
235
+ value: 0.9583333333333334
236
+ name: Dot Accuracy@5
237
+ - type: dot_accuracy@10
238
+ value: 0.9791666666666666
239
+ name: Dot Accuracy@10
240
+ - type: dot_precision@1
241
+ value: 0.6875
242
+ name: Dot Precision@1
243
+ - type: dot_precision@3
244
+ value: 0.28472222222222215
245
+ name: Dot Precision@3
246
+ - type: dot_precision@5
247
+ value: 0.19166666666666665
248
+ name: Dot Precision@5
249
+ - type: dot_precision@10
250
+ value: 0.09791666666666665
251
+ name: Dot Precision@10
252
+ - type: dot_recall@1
253
+ value: 0.6875
254
+ name: Dot Recall@1
255
+ - type: dot_recall@3
256
+ value: 0.8541666666666666
257
+ name: Dot Recall@3
258
+ - type: dot_recall@5
259
+ value: 0.9583333333333334
260
+ name: Dot Recall@5
261
+ - type: dot_recall@10
262
+ value: 0.9791666666666666
263
+ name: Dot Recall@10
264
+ - type: dot_ndcg@10
265
+ value: 0.8280840444145441
266
+ name: Dot Ndcg@10
267
+ - type: dot_mrr@10
268
+ value: 0.7793650793650793
269
+ name: Dot Mrr@10
270
+ - type: dot_map@100
271
+ value: 0.7812590187590187
272
+ name: Dot Map@100
273
+ ---
274
+
275
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
276
+
277
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
278
+
279
+ ## Model Details
280
+
281
+ ### Model Description
282
+ - **Model Type:** Sentence Transformer
283
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision 9a9e5834d2e89cdd8bb72b64111dde496e4fe78c -->
284
+ - **Maximum Sequence Length:** 512 tokens
285
+ - **Output Dimensionality:** 1024 tokens
286
+ - **Similarity Function:** Cosine Similarity
287
+ <!-- - **Training Dataset:** Unknown -->
288
+ <!-- - **Language:** Unknown -->
289
+ <!-- - **License:** Unknown -->
290
+
291
+ ### Model Sources
292
+
293
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
294
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
295
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
296
+
297
+ ### Full Model Architecture
298
+
299
+ ```
300
+ SentenceTransformer(
301
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
302
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
303
+ (2): Normalize()
304
+ )
305
+ ```
306
+
307
+ ## Usage
308
+
309
+ ### Direct Usage (Sentence Transformers)
310
+
311
+ First install the Sentence Transformers library:
312
+
313
+ ```bash
314
+ pip install -U sentence-transformers
315
+ ```
316
+
317
+ Then you can load this model and run inference.
318
+ ```python
319
+ from sentence_transformers import SentenceTransformer
320
+
321
+ # Download from the 🤗 Hub
322
+ model = SentenceTransformer("llm-wizard/legal-ft-arctic-l")
323
+ # Run inference
324
+ sentences = [
325
+ "What recent partnership did News Corp enter into regarding licensing content for OpenAI's applications?",
326
+ 'licensing initiatives abound.”3 For example, News Corp recently partnered with OpenAI to license \nits content for certain uses in OpenAI’s applications. OpenAI users will have the benefit of \naccessing Plaintiffs’ content, whether quoted or summarized by OpenAI. This cooperative \nrelationship will allow OpenAI and Plaintiffs to experiment with new product experiences and \nrevenue models. \n15. \nGenerative AI technology can be developed in two ways. It can be developed \nlegally by recognizing the legitimate rights of copyright holders and by including in the AI business \nmodel the legitimate costs and benefits of licensing the copyrighted material, or it can be developed',
327
+ 'integrity infractions. Plain and simple. It should not take the Plaintiffs engaging counsel, \ndemanding information and forcing Hingham to investigate this matter to reveal that selection for \nNHS was a manipulated sham conducted by the Defendants, who at all times relevant were state \nactors. \nC. The Student Will Suffer Irreparable Harm If The Injunction is Not Granted \nIn order for the Plaintiffs to obtain injunctive relief, they must show that they are "likely to \nsuffer irreparable injury before a decision is rendered on the merits." See Philips Elecs. N. Am. \nCorp. v. Halperin, 2000 Mass. Super LEXIS 574 citing Sierra Club v. Larson, 769 F. Supp. 420,',
328
+ ]
329
+ embeddings = model.encode(sentences)
330
+ print(embeddings.shape)
331
+ # [3, 1024]
332
+
333
+ # Get the similarity scores for the embeddings
334
+ similarities = model.similarity(embeddings, embeddings)
335
+ print(similarities.shape)
336
+ # [3, 3]
337
+ ```
338
+
339
+ <!--
340
+ ### Direct Usage (Transformers)
341
+
342
+ <details><summary>Click to see the direct usage in Transformers</summary>
343
+
344
+ </details>
345
+ -->
346
+
347
+ <!--
348
+ ### Downstream Usage (Sentence Transformers)
349
+
350
+ You can finetune this model on your own dataset.
351
+
352
+ <details><summary>Click to expand</summary>
353
+
354
+ </details>
355
+ -->
356
+
357
+ <!--
358
+ ### Out-of-Scope Use
359
+
360
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
361
+ -->
362
+
363
+ ## Evaluation
364
+
365
+ ### Metrics
366
+
367
+ #### Information Retrieval
368
+
369
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
370
+
371
+ | Metric | Value |
372
+ |:--------------------|:-----------|
373
+ | cosine_accuracy@1 | 0.6875 |
374
+ | cosine_accuracy@3 | 0.8542 |
375
+ | cosine_accuracy@5 | 0.9583 |
376
+ | cosine_accuracy@10 | 0.9792 |
377
+ | cosine_precision@1 | 0.6875 |
378
+ | cosine_precision@3 | 0.2847 |
379
+ | cosine_precision@5 | 0.1917 |
380
+ | cosine_precision@10 | 0.0979 |
381
+ | cosine_recall@1 | 0.6875 |
382
+ | cosine_recall@3 | 0.8542 |
383
+ | cosine_recall@5 | 0.9583 |
384
+ | cosine_recall@10 | 0.9792 |
385
+ | cosine_ndcg@10 | 0.8281 |
386
+ | cosine_mrr@10 | 0.7794 |
387
+ | **cosine_map@100** | **0.7813** |
388
+ | dot_accuracy@1 | 0.6875 |
389
+ | dot_accuracy@3 | 0.8542 |
390
+ | dot_accuracy@5 | 0.9583 |
391
+ | dot_accuracy@10 | 0.9792 |
392
+ | dot_precision@1 | 0.6875 |
393
+ | dot_precision@3 | 0.2847 |
394
+ | dot_precision@5 | 0.1917 |
395
+ | dot_precision@10 | 0.0979 |
396
+ | dot_recall@1 | 0.6875 |
397
+ | dot_recall@3 | 0.8542 |
398
+ | dot_recall@5 | 0.9583 |
399
+ | dot_recall@10 | 0.9792 |
400
+ | dot_ndcg@10 | 0.8281 |
401
+ | dot_mrr@10 | 0.7794 |
402
+ | dot_map@100 | 0.7813 |
403
+
404
+ <!--
405
+ ## Bias, Risks and Limitations
406
+
407
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
408
+ -->
409
+
410
+ <!--
411
+ ### Recommendations
412
+
413
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
414
+ -->
415
+
416
+ ## Training Details
417
+
418
+ ### Training Dataset
419
+
420
+ #### Unnamed Dataset
421
+
422
+
423
+ * Size: 400 training samples
424
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
425
+ * Approximate statistics based on the first 400 samples:
426
+ | | sentence_0 | sentence_1 |
427
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
428
+ | type | string | string |
429
+ | details | <ul><li>min: 10 tokens</li><li>mean: 20.73 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 140.37 tokens</li><li>max: 260 tokens</li></ul> |
430
+ * Samples:
431
+ | sentence_0 | sentence_1 |
432
+ |:---------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
433
+ | <code>How does Perplexity's business model differ from that of traditional search engines?</code> | <code>11. <br>Perplexity’s business is fundamentally distinct from that of traditional search <br>engines that also copy a vast amount of content into their indices but do so merely to provide links <br>to the originating sites. In its traditional form, a search engine is a tool for discovery, pointing <br>searchers to websites such as the pages of The Wall Street Journal or the New York Post, where the <br>users can click to find the information and answers they seek. Those clicks in turn provide revenue <br>for content producers. In part because traditional search engines that simply provide hyperlinks <br>promote merely the discovery of copyrighted content, and not its substitution (and commercial</code> |
434
+ | <code>What role do clicks on traditional search engines play in the revenue generation for content producers?</code> | <code>11. <br>Perplexity’s business is fundamentally distinct from that of traditional search <br>engines that also copy a vast amount of content into their indices but do so merely to provide links <br>to the originating sites. In its traditional form, a search engine is a tool for discovery, pointing <br>searchers to websites such as the pages of The Wall Street Journal or the New York Post, where the <br>users can click to find the information and answers they seek. Those clicks in turn provide revenue <br>for content producers. In part because traditional search engines that simply provide hyperlinks <br>promote merely the discovery of copyrighted content, and not its substitution (and commercial</code> |
435
+ | <code>Who were the founders of Dow Jones?</code> | <code>founded by reporters Charles Dow, Edward Jones, and Charles Bergstresser. Publishing the first <br>edition of The Wall Street Journal in July 1889, Dow Jones has now expanded into a worldwide <br>news powerhouse. It creates and distributes some of the most widely recognized and reputable <br>publications in the news industry, including, in addition to The Wall Street Journal, Dow Jones <br>Newswires, MarketWatch, Financial News, and Barron’s. <br>29. <br>Dow Jones is a trusted source of accurate, original news stories, data and analytics, <br>and financial and business insight for millions of customers across the country and around the <br>world. <br>30. <br>A recipient of 39 Pulitzer Prizes, the award-winning newsroom at The Wall Street</code> |
436
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
437
+ ```json
438
+ {
439
+ "loss": "MultipleNegativesRankingLoss",
440
+ "matryoshka_dims": [
441
+ 768,
442
+ 512,
443
+ 256,
444
+ 128,
445
+ 64
446
+ ],
447
+ "matryoshka_weights": [
448
+ 1,
449
+ 1,
450
+ 1,
451
+ 1,
452
+ 1
453
+ ],
454
+ "n_dims_per_step": -1
455
+ }
456
+ ```
457
+
458
+ ### Training Hyperparameters
459
+ #### Non-Default Hyperparameters
460
+
461
+ - `eval_strategy`: steps
462
+ - `per_device_train_batch_size`: 10
463
+ - `per_device_eval_batch_size`: 10
464
+ - `num_train_epochs`: 10
465
+ - `multi_dataset_batch_sampler`: round_robin
466
+
467
+ #### All Hyperparameters
468
+ <details><summary>Click to expand</summary>
469
+
470
+ - `overwrite_output_dir`: False
471
+ - `do_predict`: False
472
+ - `eval_strategy`: steps
473
+ - `prediction_loss_only`: True
474
+ - `per_device_train_batch_size`: 10
475
+ - `per_device_eval_batch_size`: 10
476
+ - `per_gpu_train_batch_size`: None
477
+ - `per_gpu_eval_batch_size`: None
478
+ - `gradient_accumulation_steps`: 1
479
+ - `eval_accumulation_steps`: None
480
+ - `torch_empty_cache_steps`: None
481
+ - `learning_rate`: 5e-05
482
+ - `weight_decay`: 0.0
483
+ - `adam_beta1`: 0.9
484
+ - `adam_beta2`: 0.999
485
+ - `adam_epsilon`: 1e-08
486
+ - `max_grad_norm`: 1
487
+ - `num_train_epochs`: 10
488
+ - `max_steps`: -1
489
+ - `lr_scheduler_type`: linear
490
+ - `lr_scheduler_kwargs`: {}
491
+ - `warmup_ratio`: 0.0
492
+ - `warmup_steps`: 0
493
+ - `log_level`: passive
494
+ - `log_level_replica`: warning
495
+ - `log_on_each_node`: True
496
+ - `logging_nan_inf_filter`: True
497
+ - `save_safetensors`: True
498
+ - `save_on_each_node`: False
499
+ - `save_only_model`: False
500
+ - `restore_callback_states_from_checkpoint`: False
501
+ - `no_cuda`: False
502
+ - `use_cpu`: False
503
+ - `use_mps_device`: False
504
+ - `seed`: 42
505
+ - `data_seed`: None
506
+ - `jit_mode_eval`: False
507
+ - `use_ipex`: False
508
+ - `bf16`: False
509
+ - `fp16`: False
510
+ - `fp16_opt_level`: O1
511
+ - `half_precision_backend`: auto
512
+ - `bf16_full_eval`: False
513
+ - `fp16_full_eval`: False
514
+ - `tf32`: None
515
+ - `local_rank`: 0
516
+ - `ddp_backend`: None
517
+ - `tpu_num_cores`: None
518
+ - `tpu_metrics_debug`: False
519
+ - `debug`: []
520
+ - `dataloader_drop_last`: False
521
+ - `dataloader_num_workers`: 0
522
+ - `dataloader_prefetch_factor`: None
523
+ - `past_index`: -1
524
+ - `disable_tqdm`: False
525
+ - `remove_unused_columns`: True
526
+ - `label_names`: None
527
+ - `load_best_model_at_end`: False
528
+ - `ignore_data_skip`: False
529
+ - `fsdp`: []
530
+ - `fsdp_min_num_params`: 0
531
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
532
+ - `fsdp_transformer_layer_cls_to_wrap`: None
533
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
534
+ - `deepspeed`: None
535
+ - `label_smoothing_factor`: 0.0
536
+ - `optim`: adamw_torch
537
+ - `optim_args`: None
538
+ - `adafactor`: False
539
+ - `group_by_length`: False
540
+ - `length_column_name`: length
541
+ - `ddp_find_unused_parameters`: None
542
+ - `ddp_bucket_cap_mb`: None
543
+ - `ddp_broadcast_buffers`: False
544
+ - `dataloader_pin_memory`: True
545
+ - `dataloader_persistent_workers`: False
546
+ - `skip_memory_metrics`: True
547
+ - `use_legacy_prediction_loop`: False
548
+ - `push_to_hub`: False
549
+ - `resume_from_checkpoint`: None
550
+ - `hub_model_id`: None
551
+ - `hub_strategy`: every_save
552
+ - `hub_private_repo`: False
553
+ - `hub_always_push`: False
554
+ - `gradient_checkpointing`: False
555
+ - `gradient_checkpointing_kwargs`: None
556
+ - `include_inputs_for_metrics`: False
557
+ - `eval_do_concat_batches`: True
558
+ - `fp16_backend`: auto
559
+ - `push_to_hub_model_id`: None
560
+ - `push_to_hub_organization`: None
561
+ - `mp_parameters`:
562
+ - `auto_find_batch_size`: False
563
+ - `full_determinism`: False
564
+ - `torchdynamo`: None
565
+ - `ray_scope`: last
566
+ - `ddp_timeout`: 1800
567
+ - `torch_compile`: False
568
+ - `torch_compile_backend`: None
569
+ - `torch_compile_mode`: None
570
+ - `dispatch_batches`: None
571
+ - `split_batches`: None
572
+ - `include_tokens_per_second`: False
573
+ - `include_num_input_tokens_seen`: False
574
+ - `neftune_noise_alpha`: None
575
+ - `optim_target_modules`: None
576
+ - `batch_eval_metrics`: False
577
+ - `eval_on_start`: False
578
+ - `eval_use_gather_object`: False
579
+ - `batch_sampler`: batch_sampler
580
+ - `multi_dataset_batch_sampler`: round_robin
581
+
582
+ </details>
583
+
584
+ ### Training Logs
585
+ | Epoch | Step | cosine_map@100 |
586
+ |:-----:|:----:|:--------------:|
587
+ | 1.0 | 40 | 0.7519 |
588
+ | 1.25 | 50 | 0.8072 |
589
+ | 2.0 | 80 | 0.7892 |
590
+ | 2.5 | 100 | 0.7949 |
591
+ | 3.0 | 120 | 0.7850 |
592
+ | 3.75 | 150 | 0.7537 |
593
+ | 4.0 | 160 | 0.7905 |
594
+ | 5.0 | 200 | 0.7650 |
595
+ | 6.0 | 240 | 0.7860 |
596
+ | 6.25 | 250 | 0.7806 |
597
+ | 7.0 | 280 | 0.7819 |
598
+ | 7.5 | 300 | 0.7820 |
599
+ | 8.0 | 320 | 0.7820 |
600
+ | 8.75 | 350 | 0.7821 |
601
+ | 9.0 | 360 | 0.7823 |
602
+ | 10.0 | 400 | 0.7813 |
603
+
604
+
605
+ ### Framework Versions
606
+ - Python: 3.10.12
607
+ - Sentence Transformers: 3.2.1
608
+ - Transformers: 4.44.2
609
+ - PyTorch: 2.4.1+cu121
610
+ - Accelerate: 0.34.2
611
+ - Datasets: 3.0.2
612
+ - Tokenizers: 0.19.1
613
+
614
+ ## Citation
615
+
616
+ ### BibTeX
617
+
618
+ #### Sentence Transformers
619
+ ```bibtex
620
+ @inproceedings{reimers-2019-sentence-bert,
621
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
622
+ author = "Reimers, Nils and Gurevych, Iryna",
623
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
624
+ month = "11",
625
+ year = "2019",
626
+ publisher = "Association for Computational Linguistics",
627
+ url = "https://arxiv.org/abs/1908.10084",
628
+ }
629
+ ```
630
+
631
+ #### MatryoshkaLoss
632
+ ```bibtex
633
+ @misc{kusupati2024matryoshka,
634
+ title={Matryoshka Representation Learning},
635
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
636
+ year={2024},
637
+ eprint={2205.13147},
638
+ archivePrefix={arXiv},
639
+ primaryClass={cs.LG}
640
+ }
641
+ ```
642
+
643
+ #### MultipleNegativesRankingLoss
644
+ ```bibtex
645
+ @misc{henderson2017efficient,
646
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
647
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
648
+ year={2017},
649
+ eprint={1705.00652},
650
+ archivePrefix={arXiv},
651
+ primaryClass={cs.CL}
652
+ }
653
+ ```
654
+
655
+ <!--
656
+ ## Glossary
657
+
658
+ *Clearly define terms in order to be accessible across audiences.*
659
+ -->
660
+
661
+ <!--
662
+ ## Model Card Authors
663
+
664
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
665
+ -->
666
+
667
+ <!--
668
+ ## Model Card Contact
669
+
670
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
671
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-l",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.44.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6353a1500888fb71b71be9c70cee96c5b375d4f59a039faa94e9ee6477cfa46f
3
+ size 1336413848
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff