File size: 2,782 Bytes
a1c8c4c 4d4e110 a1c8c4c 34f26ef bdeef4e 34f26ef df3337e 34f26ef df3337e 34f26ef 83c1822 34f26ef bdeef4e 34f26ef df3337e 34f26ef 4d4e110 34f26ef 4d4e110 df3337e 4d4e110 34f26ef 4d4e110 34f26ef df3337e 34f26ef 4d4e110 df3337e 34f26ef 4d4e110 34f26ef 4d4e110 34f26ef 4d4e110 34f26ef 4d4e110 34f26ef 4d4e110 34f26ef 4d4e110 34f26ef 4d4e110 34f26ef 4d4e110 34f26ef 4d4e110 34f26ef 4d4e110 34f26ef df3337e 34f26ef 4d4e110 34f26ef 4d4e110 34f26ef 4d4e110 34f26ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
inference: false
---
# SLIM-EMOTIONS
<!-- Provide a quick summary of what the model is/does. -->
**slim-emotions** is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") model series, consisting of small, specialized decoder-based models, fine-tuned for function-calling.
slim-emotions has been fine-tuned for **emotion analysis** function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.:
`{"emotions": ["proud"]}`
SLIM models are designed to generate structured outputs that can be used programmatically as part of a multi-step, multi-model LLM-based automation workflow.
Each slim model has a 'quantized tool' version, e.g., [**'slim-emotions-tool'**](https://huggingface.co/llmware/slim-emotions-tool).
## Prompt format:
`function = "classify"`
`params = "emotions"`
`prompt = "<human> " + {text} + "\n" + `
`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"`
<details>
<summary>Transformers Script </summary>
model = AutoModelForCausalLM.from_pretrained("llmware/slim-emotions")
tokenizer = AutoTokenizer.from_pretrained("llmware/slim-emotions")
function = "classify"
params = "emotions"
text = "The stock market declined yesterday as investors worried increasingly about the slowing economy."
prompt = "<human>: " + text + "\n" + f"<{function}> {params} </{function}>\n<bot>:"
inputs = tokenizer(prompt, return_tensors="pt")
start_of_input = len(inputs.input_ids[0])
outputs = model.generate(
inputs.input_ids.to('cpu'),
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.3,
max_new_tokens=100
)
output_only = tokenizer.decode(outputs[0][start_of_input:], skip_special_tokens=True)
print("output only: ", output_only)
# here's the fun part
try:
output_only = ast.literal_eval(llm_string_output)
print("success - converted to python dictionary automatically")
except:
print("fail - could not convert to python dictionary automatically - ", llm_string_output)
</details>
<details>
<summary>Using as Function Call in LLMWare</summary>
from llmware.models import ModelCatalog
slim_model = ModelCatalog().load_model("llmware/slim-emotions")
response = slim_model.function_call(text,params=["emotions"], function="classify")
print("llmware - llm_response: ", response)
</details>
## Model Card Contact
Darren Oberst & llmware team
[Join us on Discord](https://discord.gg/MhZn5Nc39h)
|