File size: 1,845 Bytes
1a53b52
 
 
2307ed4
 
8da82bd
1a53b52
 
8da82bd
1a53b52
8da82bd
1a53b52
e858026
1a53b52
 
 
 
 
8da82bd
 
 
1a53b52
 
b092c70
237fb81
1a53b52
 
b092c70
 
8da82bd
 
 
 
 
b092c70
d2504b9
8da82bd
1a53b52
 
 
b092c70
 
1a53b52
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
license: apache-2.0
inference: false 
base_model: llmware/slim-extract-phi-3
base_model_relation: quantized 
tags: [green, p3, llmware-fx, ov, emerald]
---

# slim-extract-phi-3-ov  

**slim-extract-phi-3-ov** is a specialized function calling model with a single mission to look for values in a text, based on an "extract" key that is passed as a parameter.  No other instructions are required except to pass the context passage, and the target key, and the model will generate a python dictionary consisting of the extract key and a list of the values found in the text, including an 'empty list' if the text does not provide an answer for the value of the selected key.  

This is an OpenVino int4 quantized version of slim-extract-phi-3, providing a fast, high-quality inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.    


### Model Description

- **Developed by:** llmware  
- **Model type:** phi-3
- **Parameters:** 3.8 billion
- **Model Parent:** llmware/slim-extract-phi-3
- **Language(s) (NLP):** English  
- **License:** Apache 2.0  
- **Uses:** Extraction of values from complex business documents    
- **RAG Benchmark Accuracy Score:** NA  
- **Quantization:** int4  
  
### Example Usage  

```python
      from llmware.models import ModelCatalog
      text_passage = "The company announced that for the current quarter the total revenue increased by 9% to $125 million."  
      model = ModelCatalog().load_model("slim-extract-phi-3-ov")   
      llm_response = model.function_call(text_passage, function="extract", params=["revenue"])  

      Output: `llm_response = {'revenue': ['$125 million']}`  
```  

## Model Card Contact

[llmware on github](https://www.github.com/llmware-ai/llmware)  

[llmware on hf](https://www.huggingface.co/llmware)  

[llmware website](https://www.llmware.ai)