File size: 1,877 Bytes
c895d91
 
 
1396542
 
48fd9be
c895d91
 
48fd9be
c895d91
62f1ea5
c895d91
48fd9be
c895d91
 
 
 
 
 
 
d261da9
c895d91
 
 
 
 
 
3265210
 
 
 
 
 
 
 
 
 
c895d91
 
 
48fd9be
 
c895d91
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
license: apache-2.0
inference: false 
base_model: llmware/slim-extract-tiny
base_model_relation: quantized 
tags: [green, p1, llmware-fx, ov, emerald]
---

# slim-extract-tiny-ov  

**slim-extract-tiny-ov** is a specialized function calling model with a single mission to look for values in a text, based on an "extract" key that is passed as a parameter.  No other instructions are required except to pass the context passage, and the target key, and the model will generate a python dictionary consisting of the extract key and a list of the values found in the text, including an 'empty list' if the text does not provide an answer for the value of the selected key.  

This is an OpenVino int4 quantized version of slim-extract-tiny, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.    


### Model Description

- **Developed by:** llmware  
- **Model type:** tinyllama  
- **Parameters:** 1.1 billion
- **Model Parent:** [llmware/slim-extract-tiny](https://huggingface.co/llmware/slim-extract-tiny)
- **Language(s) (NLP):** English  
- **License:** Apache 2.0  
- **Uses:** Extraction of values from complex business documents    
- **RAG Benchmark Accuracy Score:** NA  
- **Quantization:** int4  
  
### Example Usage  

    from llmware.models import ModelCatalog

    text_passage = "The company announced that for the current quarter the total revenue increased by 9% to $125 million."  
    model = ModelCatalog().load_model("slim-extract-tiny-ov")   
    llm_response = model.function_call(text_passage, function="extract", params=["revenue"])  

    Output: `llm_response = {"revenue": [$125 million"]}`  
  

## Model Card Contact

[llmware on github](https://www.github.com/llmware-ai/llmware)  

[llmware on hf](https://www.huggingface.co/llmware)  

[llmware website](https://www.llmware.ai)