--- license: apache-2.0 inference: false --- # SLIM-EXTRACT-TINY **slim-extract-tiny** implements a specialized function-calling customizable 'extract' capability that takes as an input a context passage, a customized key, and outputs a python dictionary with key that corresponds to the customized key, with a value consisting of a list of items extracted from the text corresponding to that key, e.g.,     `{'universities': ['Berkeley, Stanford, Yale, University of Florida, ...'] }` This model is fine-tuned on top of a tiny-llama 1b base. For fast inference use, we would recommend the 'quantized tool' version, e.g., [**'slim-extract-tiny-tool'**](https://huggingface.co/llmware/slim-extract-tiny-tool). ## Prompt format: `function = "extract"` `params = "{custom key}"` `prompt = " " + {text} + "\n" + `                       `"<{function}> " + {params} + "" + "\n:"`
Transformers Script model = AutoModelForCausalLM.from_pretrained("llmware/slim-extract-tiny") tokenizer = AutoTokenizer.from_pretrained("llmware/slim-extract-tiny") function = "extract" params = "company" text = "Tesla stock declined yesterday 8% in premarket trading after a poorly-received event in San Francisco yesterday, in which the company indicated a likely shortfall in revenue." prompt = ": " + text + "\n" + f"<{function}> {params} \n:" inputs = tokenizer(prompt, return_tensors="pt") start_of_input = len(inputs.input_ids[0]) outputs = model.generate( inputs.input_ids.to('cpu'), eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, do_sample=True, temperature=0.3, max_new_tokens=100 ) output_only = tokenizer.decode(outputs[0][start_of_input:], skip_special_tokens=True) print("output only: ", output_only) # here's the fun part try: output_only = ast.literal_eval(llm_string_output) print("success - converted to python dictionary automatically") except: print("fail - could not convert to python dictionary automatically - ", llm_string_output)
Using as Function Call in LLMWare from llmware.models import ModelCatalog slim_model = ModelCatalog().load_model("llmware/slim-extract-tiny") response = slim_model.function_call(text,params=["company"], function="extract") print("llmware - llm_response: ", response)
## Model Card Contact Darren Oberst & llmware team [Join us on Discord](https://discord.gg/MhZn5Nc39h)