doberst commited on
Commit
1d390db
1 Parent(s): 8662d80

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -3,23 +3,23 @@ license: apache-2.0
3
  inference: false
4
  ---
5
 
6
- # SLIM-Q-GEN-PHI-3
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
- **slim-q-gen-phi-3** implements a specialized function-calling question generation from a context passage, with output in the form of a python dictionary, e.g.,
11
 
12
- &nbsp;&nbsp;&nbsp;&nbsp;`{'question': ['What were earnings per share in the most recent quarter?'] }
13
 
14
  This model is finetuned on top of phi-3-mini-4k-instruct base.
15
 
16
- For fast inference use, we would recommend the 'quantized tool' version, e.g., [**'slim-q-gen-phi-3-tool'**](https://huggingface.co/llmware/slim-q-gen-phi-3-tool).
17
 
18
 
19
  ## Prompt format:
20
 
21
  `function = "generate"`
22
- `params = "{'question', 'boolean', or 'multiple choice'}"`
23
  `prompt = "<human> " + {text} + "\n" + `
24
  &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"`
25
 
@@ -27,8 +27,8 @@ For fast inference use, we would recommend the 'quantized tool' version, e.g.,
27
  <details>
28
  <summary>Transformers Script </summary>
29
 
30
- model = AutoModelForCausalLM.from_pretrained("llmware/slim-q-gen-phi-3")
31
- tokenizer = AutoTokenizer.from_pretrained("llmware/slim-q-gen-phi-3")
32
 
33
  function = "generate"
34
  params = "boolean"
@@ -53,7 +53,7 @@ For fast inference use, we would recommend the 'quantized tool' version, e.g.,
53
 
54
  print("output only: ", output_only)
55
 
56
- [OUTPUT]: {'llm_response': {'question': ['Did Telsa stock decline more than 8% yesterday?']} }
57
 
58
  # here's the fun part
59
  try:
@@ -72,7 +72,7 @@ For fast inference use, we would recommend the 'quantized tool' version, e.g.,
72
  <summary>Using as Function Call in LLMWare</summary>
73
 
74
  from llmware.models import ModelCatalog
75
- slim_model = ModelCatalog().load_model("llmware/slim-q-gen-phi-3", sample=True, temperature=0.7)
76
  response = slim_model.function_call(text,params=["boolean"], function="generate")
77
 
78
  print("llmware - llm_response: ", response)
 
3
  inference: false
4
  ---
5
 
6
+ # SLIM-QA-GEN-PHI-3
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
+ **slim-qa-gen-phi-3** implements a specialized function-calling question and answer generation from a context passage, with output in the form of a python dictionary, e.g.,
11
 
12
+ &nbsp;&nbsp;&nbsp;&nbsp;`{'question': ['What were earnings per share in the most recent quarter?'], 'answer': ['$2.39'] }
13
 
14
  This model is finetuned on top of phi-3-mini-4k-instruct base.
15
 
16
+ For fast inference use, we would recommend the 'quantized tool' version, e.g., [**'slim-qa-gen-phi-3-tool'**](https://huggingface.co/llmware/slim-qa-gen-phi-3-tool).
17
 
18
 
19
  ## Prompt format:
20
 
21
  `function = "generate"`
22
+ `params = "{'question, answer', 'boolean', or 'multiple choice'}"`
23
  `prompt = "<human> " + {text} + "\n" + `
24
  &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"`
25
 
 
27
  <details>
28
  <summary>Transformers Script </summary>
29
 
30
+ model = AutoModelForCausalLM.from_pretrained("llmware/slim-qa-gen-phi-3")
31
+ tokenizer = AutoTokenizer.from_pretrained("llmware/slim-qa-gen-phi-3")
32
 
33
  function = "generate"
34
  params = "boolean"
 
53
 
54
  print("output only: ", output_only)
55
 
56
+ [OUTPUT]: {'llm_response': {'question': ['Did Telsa stock decline more than 5% yesterday?'], 'answer':['yes'] } }
57
 
58
  # here's the fun part
59
  try:
 
72
  <summary>Using as Function Call in LLMWare</summary>
73
 
74
  from llmware.models import ModelCatalog
75
+ slim_model = ModelCatalog().load_model("llmware/slim-qa-gen-phi-3", sample=True, temperature=0.5)
76
  response = slim_model.function_call(text,params=["boolean"], function="generate")
77
 
78
  print("llmware - llm_response: ", response)