File size: 1,744 Bytes
a436ada
 
 
dbfa576
5542a92
dbfa576
 
 
 
1b509ca
dbfa576
e884afa
dbfa576
1b509ca
dbfa576
1b509ca
 
 
 
 
 
 
 
74e12f4
e884afa
 
6e3cab0
5780c74
1b509ca
 
 
c973885
6e3cab0
 
 
 
 
76c1bbc
dbfa576
 
76c1bbc
 
dbfa576
 
 
c95245d
 
387092a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
license: apache-2.0
---

# SLIM-SENTIMENT-TOOL

<!-- Provide a quick summary of what the model is/does. -->


**slim-sentiment-tool** is a 4_K_M quantized GGUF version of slim-sentiment, providing a small, fast inference implementation, optimized for multi-model concurrent deployment.  

[**slim-sentiment**](https://huggingface.co/llmware/slim-sentiment) is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.

To pull the model via API:  

    from huggingface_hub import snapshot_download           
    snapshot_download("llmware/slim-sentiment-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)  
    

Load in your favorite GGUF inference engine, or try with llmware as follows:

    from llmware.models import ModelCatalog  
    
    # to load the model and make a basic inference
    model = ModelCatalog().load_model("slim-sentiment-tool")
    response = model.function_call(text_sample)  

    # this one line will download the model and run a series of tests
    ModelCatalog().tool_test_run("slim-sentiment-tool", verbose=True)  


Slim models can also be orchestrated as part of multi-model, multi-step LLMfx calls:

    from llmware.agents import LLMfx

    llm_fx = LLMfx()
    llm_fx.load_tool("sentiment")
    response = llm_fx.sentiment(text)  


Note: please review [**config.json**](https://huggingface.co/llmware/slim-sentiment-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.  


## Model Card Contact

Darren Oberst & llmware team  

[Any questions? Join us on Discord](https://discord.gg/MhZn5Nc39h)