File size: 1,744 Bytes
a436ada dbfa576 5542a92 dbfa576 1b509ca dbfa576 e884afa dbfa576 1b509ca dbfa576 1b509ca 74e12f4 e884afa 6e3cab0 5780c74 1b509ca c973885 6e3cab0 76c1bbc dbfa576 76c1bbc dbfa576 c95245d 387092a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: apache-2.0
---
# SLIM-SENTIMENT-TOOL
<!-- Provide a quick summary of what the model is/does. -->
**slim-sentiment-tool** is a 4_K_M quantized GGUF version of slim-sentiment, providing a small, fast inference implementation, optimized for multi-model concurrent deployment.
[**slim-sentiment**](https://huggingface.co/llmware/slim-sentiment) is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.
To pull the model via API:
from huggingface_hub import snapshot_download
snapshot_download("llmware/slim-sentiment-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
Load in your favorite GGUF inference engine, or try with llmware as follows:
from llmware.models import ModelCatalog
# to load the model and make a basic inference
model = ModelCatalog().load_model("slim-sentiment-tool")
response = model.function_call(text_sample)
# this one line will download the model and run a series of tests
ModelCatalog().tool_test_run("slim-sentiment-tool", verbose=True)
Slim models can also be orchestrated as part of multi-model, multi-step LLMfx calls:
from llmware.agents import LLMfx
llm_fx = LLMfx()
llm_fx.load_tool("sentiment")
response = llm_fx.sentiment(text)
Note: please review [**config.json**](https://huggingface.co/llmware/slim-sentiment-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
## Model Card Contact
Darren Oberst & llmware team
[Any questions? Join us on Discord](https://discord.gg/MhZn5Nc39h)
|