doberst commited on
Commit
273ba0b
·
verified ·
1 Parent(s): 000b373

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -1
README.md CHANGED
@@ -1,3 +1,90 @@
1
  ---
2
- license: apache-2.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ inference: false
4
  ---
5
+
6
+ # SLIM-TOPICS
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+ **slim-topics** is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") model series, consisting of small, specialized decoder-based models, fine-tuned for function-calling.
11
+
12
+ slim-sentiment has been fine-tuned for **topic analysis** function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.:
13
+
14
+ &nbsp;&nbsp;&nbsp;&nbsp;`{"topics": ["..."]}`
15
+
16
+
17
+ SLIM models are designed to generate structured outputs that can be used programmatically as part of a multi-step, multi-model LLM-based automation workflow.
18
+
19
+ Each slim model has a 'quantized tool' version, e.g., [**'slim-topics-tool'**](https://huggingface.co/llmware/slim-topics-tool).
20
+
21
+
22
+ ## Prompt format:
23
+
24
+ `function = "classify"`
25
+ `params = "topics"`
26
+ `prompt = "<human> " + {text} + "\n" + `
27
+ &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"`
28
+
29
+
30
+ <details>
31
+ <summary>Transformers Script </summary>
32
+
33
+ model = AutoModelForCausalLM.from_pretrained("llmware/slim-topics")
34
+ tokenizer = AutoTokenizer.from_pretrained("llmware/slim-topics")
35
+
36
+ function = "classify"
37
+ params = "topic"
38
+
39
+ text = "The stock market declined yesterday as investors worried increasingly about the slowing economy."
40
+
41
+ prompt = "<human>: " + text + "\n" + f"<{function}> {params} </{function}>\n<bot>:"
42
+
43
+ inputs = tokenizer(prompt, return_tensors="pt")
44
+ start_of_input = len(inputs.input_ids[0])
45
+
46
+ outputs = model.generate(
47
+ inputs.input_ids.to('cpu'),
48
+ eos_token_id=tokenizer.eos_token_id,
49
+ pad_token_id=tokenizer.eos_token_id,
50
+ do_sample=True,
51
+ temperature=0.3,
52
+ max_new_tokens=100
53
+ )
54
+
55
+ output_only = tokenizer.decode(outputs[0][start_of_input:], skip_special_tokens=True)
56
+
57
+ print("output only: ", output_only)
58
+
59
+ # here's the fun part
60
+ try:
61
+ output_only = ast.literal_eval(llm_string_output)
62
+ print("success - converted to python dictionary automatically")
63
+ except:
64
+ print("fail - could not convert to python dictionary automatically - ", llm_string_output)
65
+
66
+ </details>
67
+
68
+ <details>
69
+
70
+
71
+
72
+
73
+ <summary>Using as Function Call in LLMWare</summary>
74
+
75
+ from llmware.models import ModelCatalog
76
+ slim_model = ModelCatalog().load_model("llmware/slim-topics")
77
+ response = slim_model.function_call(text,params=["topics"], function="classify")
78
+
79
+ print("llmware - llm_response: ", response)
80
+
81
+ </details>
82
+
83
+
84
+ ## Model Card Contact
85
+
86
+ Darren Oberst & llmware team
87
+
88
+ [Join us on Discord](https://discord.gg/MhZn5Nc39h)
89
+
90
+