Update README.md
Browse files
README.md
CHANGED
@@ -1,39 +1,28 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
inference: false
|
4 |
-
tags: [green,
|
5 |
---
|
6 |
|
7 |
-
# slim-
|
8 |
|
9 |
-
**slim-
|
10 |
|
11 |
-
This is an OpenVino int4 quantized version of slim-
|
12 |
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
- **Developed by:** llmware
|
17 |
-
- **Model type:**
|
18 |
-
- **Parameters:**
|
19 |
-
- **Model Parent:** llmware/slim-
|
20 |
- **Language(s) (NLP):** English
|
21 |
- **License:** Apache 2.0
|
22 |
-
- **Uses:**
|
23 |
- **RAG Benchmark Accuracy Score:** NA
|
24 |
- **Quantization:** int4
|
25 |
|
26 |
-
### Example Usage
|
27 |
-
|
28 |
-
from llmware.models import ModelCatalog
|
29 |
-
|
30 |
-
text_passage = "The company announced that for the current quarter the total revenue increased by 9% to $125 million."
|
31 |
-
model = ModelCatalog().load_model("slim-extract-tiny-ov")
|
32 |
-
llm_response = model.function_call(text_passage, function="extract", params=["revenue"])
|
33 |
-
|
34 |
-
Output: `llm_response = {"revenue": [$125 million"]}`
|
35 |
-
|
36 |
-
|
37 |
## Model Card Contact
|
38 |
|
39 |
[llmware on github](https://www.github.com/llmware-ai/llmware)
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
inference: false
|
4 |
+
tags: [green, p3, llmware-fx, ov]
|
5 |
---
|
6 |
|
7 |
+
# slim-xsum-phi-3-ov
|
8 |
|
9 |
+
**slim-xsum-phi-3-ov** is a specialized function calling model that generates an "extreme summary" (e.g. 'xsum') or headline from a context passage.
|
10 |
|
11 |
+
This is an OpenVino int4 quantized version of slim-xsum-phi-3, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
|
12 |
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
- **Developed by:** llmware
|
17 |
+
- **Model type:** phi-3
|
18 |
+
- **Parameters:** 3.8 billion
|
19 |
+
- **Model Parent:** llmware/slim-xsum-phi-3
|
20 |
- **Language(s) (NLP):** English
|
21 |
- **License:** Apache 2.0
|
22 |
+
- **Uses:** Summarization from complex business documents
|
23 |
- **RAG Benchmark Accuracy Score:** NA
|
24 |
- **Quantization:** int4
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
## Model Card Contact
|
27 |
|
28 |
[llmware on github](https://www.github.com/llmware-ai/llmware)
|