--- license: llama3.2 --- ## Llama-3.2-SFT-Vision-Arena Model Card ### Model Details Llama-3.2-SFT-Vision-Arena is a chat assistant trained by fine-tuning Llama-3.2-11B-Vision on user-shared conversations collected from Chatbot Arena. - Developed by: LMArena - Model type: An auto-regressive vision language model based on the transformer architecture - License: Llama 3.2 Community License Agreement - Finetuned from model: Llama-3.2-11B-Vision ### Model Sources - Repository: https://github.com/lm-sys/FastChat - Paper: https://arxiv.org/abs/2412.08687 ### Sample Inference Code ``` import requests import torch from PIL import Image from transformers import MllamaForConditionalGeneration, AutoProcessor model_id = "lmarena-ai/llama-3.2-sft-vision-arena" model = MllamaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) processor = AutoProcessor.from_pretrained(model_id) url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg" image = Image.open(requests.get(url, stream=True).raw) messages = [ {"role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "Write a haiku about this image: "} ]} ] input_text = processor.tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) inputs = processor( image, input_text, add_special_tokens=False, return_tensors="pt" ).to(model.device) output = model.generate(**inputs, max_new_tokens=30) print(processor.decode(output[0])) ``` ### Uses The primary use of Llama-3.2-SFT-Vision-Arena is research on vision language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ### BibTex ``` @misc{chou2024visionarena, title={VisionArena: 230K Real World User-VLM Conversations with Preference Labels}, author={Christopher Chou and Lisa Dunlap and Koki Mashita and Krishna Mandal and Trevor Darrell and Ion Stoica and Joseph E. Gonzalez and Wei-Lin Chiang}, year={2024}, eprint={2412.08687}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2412.08687}, } ```