update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: videomae-base-short-finetuned-ssv2-finetuned-rwf2000-epochs8-batch8-fp16
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# videomae-base-short-finetuned-ssv2-finetuned-rwf2000-epochs8-batch8-fp16
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [MCG-NJU/videomae-base-short-finetuned-ssv2](https://huggingface.co/MCG-NJU/videomae-base-short-finetuned-ssv2) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.4339
|
20 |
+
- Accuracy: 0.4643
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 2
|
41 |
+
- eval_batch_size: 2
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 4
|
44 |
+
- total_train_batch_size: 8
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- training_steps: 3200
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 0.4239 | 0.06 | 200 | 0.3879 | 0.82 |
|
56 |
+
| 0.4179 | 1.06 | 400 | 1.1635 | 0.6162 |
|
57 |
+
| 0.4329 | 2.06 | 600 | 0.8215 | 0.63 |
|
58 |
+
| 0.3051 | 3.06 | 800 | 0.5541 | 0.7412 |
|
59 |
+
| 0.172 | 4.06 | 1000 | 0.4696 | 0.8363 |
|
60 |
+
| 0.1955 | 5.06 | 1200 | 0.5384 | 0.78 |
|
61 |
+
| 0.2301 | 6.06 | 1400 | 1.3358 | 0.635 |
|
62 |
+
| 0.2995 | 7.06 | 1600 | 1.0372 | 0.7087 |
|
63 |
+
| 0.3789 | 8.06 | 1800 | 0.8670 | 0.7412 |
|
64 |
+
| 0.2525 | 9.06 | 2000 | 0.5886 | 0.8225 |
|
65 |
+
| 0.1846 | 10.06 | 2200 | 0.7851 | 0.735 |
|
66 |
+
| 0.1547 | 11.06 | 2400 | 0.8905 | 0.7638 |
|
67 |
+
| 0.2501 | 12.06 | 2600 | 0.9807 | 0.76 |
|
68 |
+
| 0.1046 | 13.06 | 2800 | 1.0419 | 0.7438 |
|
69 |
+
| 0.0786 | 14.06 | 3000 | 1.0128 | 0.7538 |
|
70 |
+
| 0.0178 | 15.06 | 3200 | 1.0156 | 0.75 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.25.1
|
76 |
+
- Pytorch 1.13.1+cu117
|
77 |
+
- Datasets 2.8.0
|
78 |
+
- Tokenizers 0.13.2
|