lmazzon70 commited on
Commit
ffffaa0
1 Parent(s): ea5b54e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: videomae-large-finetuned-kinetics-finetuned-rwf2000-epochs8-batch8-kl-torch2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # videomae-large-finetuned-kinetics-finetuned-rwf2000-epochs8-batch8-kl-torch2
16
+
17
+ This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6146
20
+ - Accuracy: 0.7212
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 2
41
+ - eval_batch_size: 2
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 4
44
+ - total_train_batch_size: 8
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - training_steps: 3200
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 0.361 | 0.06 | 200 | 0.2425 | 0.895 |
56
+ | 0.3449 | 1.06 | 400 | 0.6639 | 0.68 |
57
+ | 0.2435 | 2.06 | 600 | 0.9180 | 0.6663 |
58
+ | 0.2001 | 3.06 | 800 | 0.5656 | 0.7662 |
59
+ | 0.1405 | 4.06 | 1000 | 0.3859 | 0.86 |
60
+ | 0.1845 | 5.06 | 1200 | 0.3825 | 0.8675 |
61
+ | 0.1586 | 6.06 | 1400 | 1.4446 | 0.6687 |
62
+ | 0.2013 | 7.06 | 1600 | 0.4730 | 0.8562 |
63
+ | 0.2113 | 8.06 | 1800 | 0.3328 | 0.8862 |
64
+ | 0.245 | 9.06 | 2000 | 0.3519 | 0.8938 |
65
+ | 0.1767 | 10.06 | 2200 | 0.4004 | 0.895 |
66
+ | 0.1688 | 11.06 | 2400 | 0.6468 | 0.86 |
67
+ | 0.2823 | 12.06 | 2600 | 0.6006 | 0.8575 |
68
+ | 0.0928 | 13.06 | 2800 | 0.5516 | 0.875 |
69
+ | 0.0079 | 14.06 | 3000 | 0.5855 | 0.87 |
70
+ | 0.0325 | 15.06 | 3200 | 0.4921 | 0.8925 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.27.4
76
+ - Pytorch 2.0.0+cu117
77
+ - Datasets 2.11.0
78
+ - Tokenizers 0.13.2