PY007 commited on
Commit
66967c8
1 Parent(s): ab4a72f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -0
README.md CHANGED
@@ -11,5 +11,52 @@ Long context capability can **zero-shot transfer** from language to vision.
11
 
12
  LongVA can process **2000** frames or over **200K** visual tokens. It achieves **state-of-the-art** performance on Video-MME among 7B models.
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
 
 
11
 
12
  LongVA can process **2000** frames or over **200K** visual tokens. It achieves **state-of-the-art** performance on Video-MME among 7B models.
13
 
14
+ # Usage
15
+
16
+ First follow the instructions in [our repo](https://github.com/EvolvingLMMs-Lab/LongVA) to install relevant packages.
17
+
18
+ ```python
19
+ from longva.model.builder import load_pretrained_model
20
+ from longva.mm_utils import tokenizer_image_token, process_images
21
+ from longva.constants import IMAGE_TOKEN_INDEX
22
+ from PIL import Image
23
+ from decord import VideoReader, cpu
24
+ import torch
25
+ import numpy as np
26
+ # fix seed
27
+ torch.manual_seed(0)
28
+
29
+ model_path = "lmms-lab/LongVA-7B-DPO"
30
+ image_path = "local_demo/assets/lmms-eval.png"
31
+ video_path = "local_demo/assets/dc_demo.mp4"
32
+ max_frames_num = 16 # you can change this to several thousands so long you GPU memory can handle it :)
33
+ gen_kwargs = {"do_sample": True, "temperature": 0.5, "top_p": None, "num_beams": 1, "use_cache": True, "max_new_tokens": 1024}
34
+ tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "llava_qwen", device_map="cuda:0")
35
+
36
+ #image input
37
+ prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nDescribe the image in details.<|im_end|>\n<|im_start|>assistant\n"
38
+ input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
39
+ image = Image.open(image_path).convert("RGB")
40
+ images_tensor = process_images([image], image_processor, model.config).to(model.device, dtype=torch.float16)
41
+ with torch.inference_mode():
42
+ output_ids = model.generate(input_ids, images=[images_tensor], image_sizes=[image.size], modalities=["image"], **gen_kwargs)
43
+ outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
44
+ print(outputs)
45
+ print("-"*50)
46
+
47
+ #video input
48
+ prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nGive a detailed caption of the video as if I am blind.<|im_end|>\n<|im_start|>assistant\n"
49
+ input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
50
+ vr = VideoReader(video_path, ctx=cpu(0))
51
+ total_frame_num = len(vr)
52
+ uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
53
+ frame_idx = uniform_sampled_frames.tolist()
54
+ frames = vr.get_batch(frame_idx).asnumpy()
55
+ video_tensor = image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(model.device, dtype=torch.float16)
56
+ with torch.inference_mode():
57
+ output_ids = model.generate(input_ids, images=[video_tensor], modalities=["video"], **gen_kwargs)
58
+ outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
59
+ print(outputs)
60
+ ```
61
 
62