# LongVA

🌐 Blog | 📃 Paper | 🤗 Hugging Face | 🎥 Demo

Long context capability can **zero-shot transfer** from language to vision. LongVA can process **2000** frames or over **200K** visual tokens. It achieves **state-of-the-art** performance on Video-MME among 7B models. # Usage First follow the instructions in [our repo](https://github.com/EvolvingLMMs-Lab/LongVA) to install relevant packages. ```python from longva.model.builder import load_pretrained_model from longva.mm_utils import tokenizer_image_token, process_images from longva.constants import IMAGE_TOKEN_INDEX from PIL import Image from decord import VideoReader, cpu import torch import numpy as np # fix seed torch.manual_seed(0) model_path = "lmms-lab/LongVA-7B-DPO" image_path = "local_demo/assets/lmms-eval.png" video_path = "local_demo/assets/dc_demo.mp4" max_frames_num = 16 # you can change this to several thousands so long you GPU memory can handle it :) gen_kwargs = {"do_sample": True, "temperature": 0.5, "top_p": None, "num_beams": 1, "use_cache": True, "max_new_tokens": 1024} tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "llava_qwen", device_map="cuda:0") #image input prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n\nDescribe the image in details.<|im_end|>\n<|im_start|>assistant\n" input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device) image = Image.open(image_path).convert("RGB") images_tensor = process_images([image], image_processor, model.config).to(model.device, dtype=torch.float16) with torch.inference_mode(): output_ids = model.generate(input_ids, images=[images_tensor], image_sizes=[image.size], modalities=["image"], **gen_kwargs) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() print(outputs) print("-"*50) #video input prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n\nGive a detailed caption of the video as if I am blind.<|im_end|>\n<|im_start|>assistant\n" input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device) vr = VideoReader(video_path, ctx=cpu(0)) total_frame_num = len(vr) uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int) frame_idx = uniform_sampled_frames.tolist() frames = vr.get_batch(frame_idx).asnumpy() video_tensor = image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(model.device, dtype=torch.float16) with torch.inference_mode(): output_ids = model.generate(input_ids, images=[video_tensor], modalities=["video"], **gen_kwargs) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() print(outputs) ```