File size: 10,662 Bytes
7d7819f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba1e481
7d7819f
ba1e481
7d7819f
ba1e481
7d7819f
 
68a31db
7d7819f
 
 
 
 
 
 
 
 
31a2d7b
 
e787b9a
31a2d7b
 
e787b9a
31a2d7b
 
e787b9a
31a2d7b
 
e787b9a
31a2d7b
 
e787b9a
4cef404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25f83d
4cef404
 
b25f83d
4cef404
 
b25f83d
4cef404
 
b25f83d
4cef404
 
b25f83d
4cef404
 
b25f83d
7d7819f
 
68a31db
e787b9a
7d7819f
 
 
 
 
 
 
 
695cdcb
7d7819f
 
695cdcb
7d7819f
695cdcb
e787b9a
695cdcb
68a31db
e787b9a
695cdcb
e787b9a
695cdcb
 
7d7819f
695cdcb
 
 
e44d391
68a31db
e787b9a
7d7819f
e787b9a
7d7819f
e787b9a
7d7819f
 
68a31db
7d7819f
e787b9a
 
 
 
 
 
 
 
 
 
7d7819f
 
4cef404
b25f83d
 
 
4cef404
 
 
 
 
 
 
b25f83d
 
 
 
 
 
4cef404
b25f83d
 
7d7819f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68a31db
7d7819f
 
695cdcb
e44d391
695cdcb
e44d391
695cdcb
e44d391
 
 
 
 
 
 
 
695cdcb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: ru
datasets:
- lmqg/qg_ruquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов."
  example_title: "Question Generation Example 1" 
- text: "Однако, франкоязычный <hl> Квебек <hl> практически никогда не включается в состав Латинской Америки."
  example_title: "Question Generation Example 2" 
- text: "Классическим примером международного синдиката XX века была группа компаний <hl> Де Бирс <hl> , которая в 1980-е годы контролировала до 90 % мировой торговли алмазами."
  example_title: "Question Generation Example 3" 
model-index:
- name: lmqg/mt5-base-ruquad-qg
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_ruquad
      type: default
      args: default
    metrics:
    - name: BLEU4 (Question Generation)
      type: bleu4_question_generation
      value: 17.63
    - name: ROUGE-L (Question Generation)
      type: rouge_l_question_generation
      value: 33.02
    - name: METEOR (Question Generation)
      type: meteor_question_generation
      value: 28.48
    - name: BERTScore (Question Generation)
      type: bertscore_question_generation
      value: 85.82
    - name: MoverScore (Question Generation)
      type: moverscore_question_generation
      value: 64.56
    - name: BLEU4 (Question & Answer Generation (with Gold Answer))
      type: bleu4_question_answer_generation_with_gold_answer
      value: 19.28
    - name: ROUGE-L (Question & Answer Generation (with Gold Answer))
      type: rouge_l_question_answer_generation_with_gold_answer
      value: 52.09
    - name: METEOR (Question & Answer Generation (with Gold Answer))
      type: meteor_question_answer_generation_with_gold_answer
      value: 45.42
    - name: BERTScore (Question & Answer Generation (with Gold Answer))
      type: bertscore_question_answer_generation_with_gold_answer
      value: 90.95
    - name: MoverScore (Question & Answer Generation (with Gold Answer))
      type: moverscore_question_answer_generation_with_gold_answer
      value: 69.57
    - name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 91.1
    - name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 91.09
    - name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 91.11
    - name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 70.06
    - name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 70.04
    - name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 70.07
---

# Model Card of `lmqg/mt5-base-ruquad-qg`
This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question generation task on the [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base)   
- **Language:** ru  
- **Training data:** [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="ru", model="lmqg/mt5-base-ruquad-qg")

# model prediction
questions = model.generate_q(list_context="Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.", list_answer="в мае 1860 года")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-base-ruquad-qg")
output = pipe("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов.")

```

## Evaluation


- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-ruquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_ruquad.default.json) 

|            |   Score | Type    | Dataset                                                          |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore  |   85.82 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| Bleu_1     |   33.04 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| Bleu_2     |   26.31 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| Bleu_3     |   21.42 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| Bleu_4     |   17.63 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| METEOR     |   28.48 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| MoverScore |   64.56 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| ROUGE_L    |   33.02 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |


- ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/mt5-base-ruquad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_ruquad.default.json)

|                                 |   Score | Type    | Dataset                                                          |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore                       |   90.95 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| Bleu_1                          |   47.1  | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| Bleu_2                          |   35.2  | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| Bleu_3                          |   26.68 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| Bleu_4                          |   19.28 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| METEOR                          |   45.42 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| MoverScore                      |   69.57 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedF1Score (BERTScore)    |   91.1  | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedF1Score (MoverScore)   |   70.06 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedPrecision (BERTScore)  |   91.11 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedPrecision (MoverScore) |   70.07 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedRecall (BERTScore)     |   91.09 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedRecall (MoverScore)    |   70.04 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| ROUGE_L                         |   52.09 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_ruquad
 - dataset_name: default
 - input_types: ['paragraph_answer']
 - output_types: ['question']
 - prefix_types: None
 - model: google/mt5-base
 - max_length: 512
 - max_length_output: 32
 - epoch: 16
 - batch: 4
 - lr: 0.0005
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 16
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-ruquad-qg/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```