metadata
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: de
datasets:
- lmqg/qg_dequad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: >-
Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen,
andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>
example_title: Question Generation Example 1
- text: >-
das erste weltweit errichtete Hermann Brehmer <hl> 1855 <hl> im
niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).
example_title: Question Generation Example 2
- text: >-
Er muss Zyperngrieche sein und wird direkt für <hl> fünf Jahre <hl>
gewählt (Art. 43 Abs. 1 der Verfassung) und verfügt über weitreichende
Exekutivkompetenzen.
example_title: Question Generation Example 3
model-index:
- name: lmqg/mt5-small-dequad-qg
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_dequad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.43
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 10.08
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 11.47
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 79.9
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 54.64
- name: >-
QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold
Answer]
type: >-
qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
value: 90.55
- name: >-
QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold
Answer]
type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
value: 90.51
- name: >-
QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold
Answer]
type: >-
qa_aligned_precision_bertscore_question_answer_generation_gold_answer
value: 90.59
- name: >-
QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold
Answer]
type: >-
qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
value: 64.33
- name: >-
QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold
Answer]
type: >-
qa_aligned_recall_moverscore_question_answer_generation_gold_answer
value: 64.29
- name: >-
QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold
Answer]
type: >-
qa_aligned_precision_moverscore_question_answer_generation_gold_answer
value: 64.37
Model Card of lmqg/mt5-small-dequad-qg
This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_dequad (dataset_name: default) via lmqg
.
Overview
- Language model: google/mt5-small
- Language: de
- Training data: lmqg/qg_dequad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="de", model="lmqg/mt5-small-dequad-qg")
# model prediction
questions = model.generate_q(list_context="das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).", list_answer="1855")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-dequad-qg")
output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 79.9 | default | lmqg/qg_dequad |
Bleu_1 | 10.18 | default | lmqg/qg_dequad |
Bleu_2 | 4.02 | default | lmqg/qg_dequad |
Bleu_3 | 1.6 | default | lmqg/qg_dequad |
Bleu_4 | 0.43 | default | lmqg/qg_dequad |
METEOR | 11.47 | default | lmqg/qg_dequad |
MoverScore | 54.64 | default | lmqg/qg_dequad |
ROUGE_L | 10.08 | default | lmqg/qg_dequad |
- Metric (Question & Answer Generation): QAG metrics are computed with the gold answer and generated question on it for this model, as the model cannot provide an answer. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 90.55 | default | lmqg/qg_dequad |
QAAlignedF1Score (MoverScore) | 64.33 | default | lmqg/qg_dequad |
QAAlignedPrecision (BERTScore) | 90.59 | default | lmqg/qg_dequad |
QAAlignedPrecision (MoverScore) | 64.37 | default | lmqg/qg_dequad |
QAAlignedRecall (BERTScore) | 90.51 | default | lmqg/qg_dequad |
QAAlignedRecall (MoverScore) | 64.29 | default | lmqg/qg_dequad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_dequad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 11
- batch: 16
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}