model update
Browse files
README.md
CHANGED
@@ -7,21 +7,21 @@ metrics:
|
|
7 |
- rouge-l
|
8 |
- bertscore
|
9 |
- moverscore
|
10 |
-
language:
|
11 |
datasets:
|
12 |
- lmqg/qg_dequad
|
13 |
pipeline_tag: text2text-generation
|
14 |
tags:
|
15 |
- question generation
|
16 |
widget:
|
17 |
-
- text: "
|
18 |
example_title: "Question Generation Example 1"
|
19 |
-
- text: "
|
20 |
example_title: "Question Generation Example 2"
|
21 |
-
- text: "
|
22 |
example_title: "Question Generation Example 3"
|
23 |
model-index:
|
24 |
-
- name: lmqg/mt5-small-dequad
|
25 |
results:
|
26 |
- task:
|
27 |
name: Text2text Generation
|
@@ -66,13 +66,13 @@ model-index:
|
|
66 |
value: 64.37
|
67 |
---
|
68 |
|
69 |
-
# Model Card of `lmqg/mt5-small-dequad`
|
70 |
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
|
71 |
|
72 |
|
73 |
### Overview
|
74 |
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
|
75 |
-
- **Language:**
|
76 |
- **Training data:** [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (default)
|
77 |
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
78 |
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
|
@@ -84,10 +84,10 @@ This model is fine-tuned version of [google/mt5-small](https://huggingface.co/go
|
|
84 |
from lmqg import TransformersQG
|
85 |
|
86 |
# initialize model
|
87 |
-
model = TransformersQG(language="
|
88 |
|
89 |
# model prediction
|
90 |
-
questions = model.generate_q(list_context="
|
91 |
|
92 |
```
|
93 |
|
@@ -95,15 +95,15 @@ questions = model.generate_q(list_context="William Turner was an English painter
|
|
95 |
```python
|
96 |
from transformers import pipeline
|
97 |
|
98 |
-
pipe = pipeline("text2text-generation", "lmqg/mt5-small-dequad")
|
99 |
-
output = pipe("
|
100 |
|
101 |
```
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
|
106 |
-
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-dequad/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_dequad.default.json)
|
107 |
|
108 |
| | Score | Type | Dataset |
|
109 |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
@@ -117,7 +117,7 @@ output = pipe("<hl> Beyonce <hl> further expanded her acting career, starring as
|
|
117 |
| ROUGE_L | 10.08 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
|
118 |
|
119 |
|
120 |
-
- ***Metric (Question & Answer Generation)***: QAG metrics are computed with *the gold answer* and generated question on it for this model, as the model cannot provide an answer. [raw metric file](https://huggingface.co/lmqg/mt5-small-dequad/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_dequad.default.json)
|
121 |
|
122 |
| | Score | Type | Dataset |
|
123 |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
|
@@ -149,7 +149,7 @@ The following hyperparameters were used during fine-tuning:
|
|
149 |
- gradient_accumulation_steps: 4
|
150 |
- label_smoothing: 0.15
|
151 |
|
152 |
-
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-dequad/raw/main/trainer_config.json).
|
153 |
|
154 |
## Citation
|
155 |
```
|
|
|
7 |
- rouge-l
|
8 |
- bertscore
|
9 |
- moverscore
|
10 |
+
language: de
|
11 |
datasets:
|
12 |
- lmqg/qg_dequad
|
13 |
pipeline_tag: text2text-generation
|
14 |
tags:
|
15 |
- question generation
|
16 |
widget:
|
17 |
+
- text: "Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>"
|
18 |
example_title: "Question Generation Example 1"
|
19 |
+
- text: "das erste weltweit errichtete Hermann Brehmer <hl> 1855 <hl> im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen)."
|
20 |
example_title: "Question Generation Example 2"
|
21 |
+
- text: "Er muss Zyperngrieche sein und wird direkt für <hl> fünf Jahre <hl> gewählt (Art. 43 Abs. 1 der Verfassung) und verfügt über weitreichende Exekutivkompetenzen."
|
22 |
example_title: "Question Generation Example 3"
|
23 |
model-index:
|
24 |
+
- name: lmqg/mt5-small-dequad-qg
|
25 |
results:
|
26 |
- task:
|
27 |
name: Text2text Generation
|
|
|
66 |
value: 64.37
|
67 |
---
|
68 |
|
69 |
+
# Model Card of `lmqg/mt5-small-dequad-qg`
|
70 |
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
|
71 |
|
72 |
|
73 |
### Overview
|
74 |
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
|
75 |
+
- **Language:** de
|
76 |
- **Training data:** [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (default)
|
77 |
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
78 |
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
|
|
|
84 |
from lmqg import TransformersQG
|
85 |
|
86 |
# initialize model
|
87 |
+
model = TransformersQG(language="de", model="lmqg/mt5-small-dequad-qg")
|
88 |
|
89 |
# model prediction
|
90 |
+
questions = model.generate_q(list_context="das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).", list_answer="1855")
|
91 |
|
92 |
```
|
93 |
|
|
|
95 |
```python
|
96 |
from transformers import pipeline
|
97 |
|
98 |
+
pipe = pipeline("text2text-generation", "lmqg/mt5-small-dequad-qg")
|
99 |
+
output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>")
|
100 |
|
101 |
```
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
|
106 |
+
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-dequad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_dequad.default.json)
|
107 |
|
108 |
| | Score | Type | Dataset |
|
109 |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
|
|
117 |
| ROUGE_L | 10.08 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
|
118 |
|
119 |
|
120 |
+
- ***Metric (Question & Answer Generation)***: QAG metrics are computed with *the gold answer* and generated question on it for this model, as the model cannot provide an answer. [raw metric file](https://huggingface.co/lmqg/mt5-small-dequad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_dequad.default.json)
|
121 |
|
122 |
| | Score | Type | Dataset |
|
123 |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
|
|
|
149 |
- gradient_accumulation_steps: 4
|
150 |
- label_smoothing: 0.15
|
151 |
|
152 |
+
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-dequad-qg/raw/main/trainer_config.json).
|
153 |
|
154 |
## Citation
|
155 |
```
|